Category Archives: Opinion articles

The India Pale Ale (IPA) has become synonymous with craft beer itself. In a previous article I have introduced how the style emerged in the 18th century, and in this piece I will describe the brewing basics of this hop-forward, intense beer style from a personal point of view.

Adjusting the water as a first step

If you would also like to brew your own hop fever, here is how I do it. I start by adjusting the water, that, historically and technically speaking, plays a major role in IPA’s. From a personal point of view, I like to add enough calcium sulfate to the brewing water to bring the calcium to 200ppm and the sulfate to 400ppm, in order to get a clean bitterness from the hops. If you are making a NEIPA, you may prefer using more calcium chloride than calcium sulfate to bring your calcium up, in a reason of 1/2. In mashing terms, I favour a more fermentable wort but I still look for a dash of sweetness and some creaminess in the final product, so I always aim for temperatures below 65ºC (149ºF).

The grist, fermentation profile and hops

Following with the grist, some brewers use pils as their base malts, but pale ale malt is much more traditional, both in English and American styles. The optional use of toasted or crystal malts may bring some complexity and depth of aroma, but generally make a small portion of the grist. My personal touch is to use a small amount of Golden Promise malt, that is similar to Maris Otter, but a little softer and creamier.

I want my fermentation profile to be neutral to lightly fruity, so I use an highly attenuative ale yeast and let to ferment between 18 and 22ºC (64ºF – 72ºF). The best temperature is however 19.5ºC (67ºF), as we can extract the ideal concentration of apple, peach and pear esters without excessive fermentation derived flavour.

Finally, the hops. Here is where the world of IPA’s gets really exciting – and bitter. Hops bring aroma, bitterness and tons of flavour, but different applications bring different results. If you are brewing a hop forward IPA, American style, you should go for American or New World hops, such as Cascade, Citra or Nelson Sauvin, where you will find an abundance of tropical, citrus or piney aromas. Here, you can play with generous late hop additions, dry hopping or hopinating the pouring beer. If you are brewing an English style IPA, with a floral-spicy-peppery-grassy bouquet, you may want to use classic hops such as Golding, concentrating its use in the beginning of the boil and adding some as dry hops to spice things up.

I do like to add a handful of hops in the whirlpool and then dry hopping the beer, which I believe to be the most interesting way to hop IPA’s. There is a lot to choose from.

Hops have been beer’s best friend for a long time, and IPA’s may well be the pinnacle of that friendship. The world has gotten addicted to them, and there is no turning back from this hoppy journey.

What is your favourite IPA and hop variety? Let us know!

Happy IPA’s!

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.

Sources

BARRACHINA, Albert (2016). cervesaencatala.blogspot.com

HUXLEY, Steve (2006). Poesía líquida. Trea.

BJCP (2015). www.bjcp.org

 

Tea can be consumed in different ways. The most popular one worldwide continues to be the infusion of the dried leaves, however, solid tea consumption is growing remarkably, especially due to the new matcha (powdered tea) consumption trend. Actually, tea was firstly consumed as a whole leaf instead of simply as an infusion. The leaves were not strained and tossed as we do now, and this allowed the consumers to take advantege of all of the nutricional aspects of the tea leaf, both the water soluble and the insoluble ones.

We might say that we are still in the leaf infusion Era and regarding this matter many questions usually arise. Which one is the best? To use loose leaf or tea bags?

Both have advantages and disadvantages.

Comparing tea quality

Generally loose leaf tea is of better quality than tea sold in tea bags, especially reagarding cheap tea bags, which contain mostly tea dust and tea fannings resulting from the tea leafs processing. However, there are many good quality tea bags which use either tea sourced from cut loose tea leasf instead of the byproducts of the tea industry and some top quality brands that even sell tea bags containing full tea leaves. I usually advise loose leaf tea for heavier tea drinkers as the tea sold in this fashion is hermetically sealed until use, unlike tea bags which can lose flavour and absorb smells very easily.

A common habit, even at speciality stores, is to open the tea container and give it to the client to smell. This is not hygienic at all and should be avoided. In this regard hermetically sealed tea bags can better preserve their flavour than frequently opened tea containers. If you can afford good quality tight containers or are a rather heavy consumer of loose leaf tea this shouldn’t however pose as big as a problem.

An advantage of brewing loose leaf tea is that you can see the beauty of the leafs unfold in hot water, admire how they look like before and after brewing and how they smell. You can also play with the amount of tea you wish to brew making it lighter or stonger. When using tea bags you can play with the flavour only by modulating either the water temperature or the infusion time.

When brewing loose leaf it implies you to have more specialized tea paraphernalia and time. Usually people more inclined to loose leaf teas invest more time in tea education and look for the perfect cup.

Tea bags are normally of a lower quality when comparing to loose, hermetically sealed tea.

Regarding tea bags a lot of debate has been made about the type of tea bag. Many advocate that the pyramidal tea bags are the best as they allow more room for the leaves to expand. While some say this is more of a marketing stategy, there are a few scientific reports regarding the loose leaf vs. tea bag “battle”. A recent study compared single, double and circular tea bags with loose leaf tea. What was found was that indeed leaf swealling is higher for loose leaf, followed by double chamber tea bags, single tea bags and circular tea bags. In another study, researchers found that, althought the kinetics of goodies, i.e., polyphenol content had a faster release time in tea leafs, and independent of infusion time, when adressing tea bags, the polyphenol content was dependent on the infusion time, probably due to the swelling rates verified by the comparing research group. At the end of the day, it all boils down to tea quality.

Would you rather have low quality loose leaf tea or good quality bagged tea? Common sense is always the key? What is you way of brewing tea?

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.

Sources

J Food Sci Technol. 2017 Jul;54(8):2474-2484. doi: 10.1007/s13197-017-2690-9. Epub 2017 May 18. “Swelling and infusion of tea in tea bags.”
Avicenna J Phytomed. 2016 May-Jun;6(3):313-21. “Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.).”

The final countdown has started and with only a few days to go until we welcome 2019, it’s now time to begin the preparations for the last night of the year. There are a few things to cross off the list like rethink our New Year’s Eve resolutions after another year of messing up, stock up the pantry with raisins, have the loved ones around, organize the fireworks and invite that friend good at blowing up things and… sort out the sparkling wine! People have different ways of celebrating the start of the new year depending on the culture and traditions, but one thing seems to be always in our hand after midnight regardless of who and where we are and it is a glass of sparkling wine. Bubbles seem to sparkle the moments of celebration and on this article we will explore the ‘when, what and why’ of this festive drink.

England or France? The paradox.

Just like many other happy accidents throughout the human history, sparkling wine could be the penicillin of the wine world as there are records of incidental fizziness since Biblical times. However, the product owes its existence mainly to the development of technology unrelated to the production of the wine itself. We must ignore all the faults, accidents and the effervescence attributed to the phases of the moon and focus on the year of 1662 when Christopher Merret stated to the Royal Society in London “our wine-coopers of recent times use vast quantities of sugar and molasses to all sorts of wines to make them drink brisk and sparkling”.

There is an erroneous believe that Dom Pérignon invented sparkling wine in the late 1690s, but Merret’s report a few decades earlier is the first documented proof that still wine was intentionally turned into sparkling by adding sugar and molasses and by that time only England had the required technology to make it: the ability to produce stronger glass and the reintroduction of cork as closures.

A strong glass bottle able to withstand the high pressure of sparkling wine is mandatory and England was able to produce it in the early 1600s by using coal-fired glass furnaces at much higher temperature instead of wood-fired ones used in France, only able to produce structurally weaker glass. Also, it is essential to use a closure able to withhold the pressure and back in the XVII century it was cork. Cork was lost during the decline of the Roman Empire and only rediscovered by France in 1685 at the earliest, but England was shipping bottled wine from France sealed with corks decades earlier in the XVI century.

England had advanced glass technology in the early XVII century, which led the country to surpass the French competition.

It is clear that England had the knowledge and the means to produce and preserve the effervescence of a sparkling wine, the paradox (and what makes everything much exciting!) is the fact that they were making it with wines shipped from… Champagne! The primary fermentation in this cold region in the north of France would prematurely stop because of the low temperatures late in the season and naturally restart a few months later in the warmer spring days.

The process

It took a few decades to get to the product with the characteristics as we know in our days, essentially to understand and optimize the science behind the effervescence and establish the relation between the sugar required to the second fermentation to produce a certain amount of carbon dioxide (pressure). In our days there are strict legislation to produce this special wine, with the OIV stating that a sparkling is a wine supersaturated in carbon dioxide (CO2) from an exclusive endogenous origin (secondary fermentation), resulting in an excess pressure of this gas in the bottle of at least 3.5bars at 20°C (68ºF) or 3.0bars for bottles less than 0.25L.

The production of sparkling wine can be separated in two main stages: base wine production and second fermentation/ageing. The base wine production follows the general principles of a white wine, with the particularity that the grapes are harvested earlier in the season to retain a higher acidity (essential to the freshness and balance) and have a lower sugar content (potential alcohol normally under 11%). Once musts have fermented to dryness and the wines are filtered, stabilized and eventually fined, they are ready to the second stage: blending, second fermentation and ageing.

Blending or preparing the cuvée is generally a critical moment to define the quality of the wine and to which winemakers pay great attention.

It consists on blending wines from different vintages, sites, varieties or even press fractions, to achieve desired characteristics and consistency. The cuvée is ready for the second fermentation once the tirage liquor is added: the required sugar to achieve 5-6bars of pressure in bottle (±4g/L → 1bar) and yeast.

Most of the sparkling wine, and particularly the premium quality sparkling, is produced by the Traditional Method or Méthode Champenoise (Champagne), where the second fermentation occurs in bottle. This is followed by ageing on lees for a certain period of time (variable), removal of yeast lees and sediments by riddling and disgorging, dosage and corking. The dosage permits topping up the bottles after disgorging and adjust the final desired sugar level by adding a more or less sweet wine/syrup (tirage liquor). Along with the production method, the final sugar level of the sparkling wine is the base of one of the classification systems:

Brut Nature – 0-3g/L
Extra Brut – 0-6g/L
Brut – 0-12g/L
Extra-dry – 12-17g/L
Dry – 17-32
Demi-sec – 32-50
Sweet (Doux) – more than 50g/L

The Traditional Method has the particularity that the bottle where the second fermentation occurs is same that reaches the consumer. There’s no discussion possible when it comes to the high quality wines produced by this method, notably the fine bubbles produced and the bouquet developed during ageing on lees, but it is labour intensive and time demanding and during the 20th century other methods and technologies were developed in order to minimize the production costs. In the Transfer Method the sparkling benefits from fermentation and ageing on lees in bottle, but riddling and disgorging steps are eliminated as the bottles are then emptied to a tank under isobaric pressure for filtration, dosage and bottling. The Charmat Method took another step forward on bringing the production costs down by allowing lower quality sparkling production entirely in stainless steel tanks, with the wine being bottled only when it is finished and ready for sale.

The Traditional Method is tipically employed in higher quality sparkling wines such as Champagne.

Innovation and future of sparkling wine

When it comes to new technologies developed in recent decades, I have to mention the use of immobilized yeast in sparkling wine production as the Portuguese company Proenol has pioneered the industrial production of immobilized yeast in the world. The immobilization of yeast in a calcium alginate matrix allows the wine to remain clear and when used in the Traditional Method it will shorten the riddling time from several days/weeks to a few seconds with the beads settling immediately.

Sparkling wine production worldwide is on the rise and has seen the biggest growth in terms of volume and value in recent years. Between 2003 and 2013 there was an increase in 40% of production and by 2017 it accounted for 8% by volume and 19% by value in the world wine trade.

I love a good sparkling, but I have to admit that I’m not the greatest enthusiast of bubbles. However, it was my passport to the wine world and I honestly find fascinating the whole process of traditional sparkling wine production and the short but intensive history of the wine. Won’t complain if I spend the first moments of 2019 sipping again ‘Millésime Bruto 2013’ by Ataíde Semedo, the last great Espumante that I had the pleasure to drink. From Bairrada, of course. Salut!

Sensory analysis is a science. No matter how subjective it may be, sensory analysis represents a decisive step during the various stages of food product development, a unique tool for determination of organoleptic properties of food and, more specifically, beer. Being a science, sensory analysis requires care in planning and diligence in execution. Sensory tests must comply with very specific standards, in particular through the establishment of certain ideal conditions to perform the experiments.

The sensory analysis of beer focuses on the beverage’s appearance, aroma, flavour and palate, and is regarded as an important quality control method for the development of new products.

The ideal conditions for the sensory experiment

Regarding the place where the tests are conducted, both temperature and humidity must be constant and easily controllable. In general, a temperature of 20 ± 2 ° C and relative humidity between 60% and 70% is recommended. The place should be free of external noises, well ventilated and free of odors. Also it should be coated with a material that is easy to clean, odor-free and that does not absorb odors. Therefore, carpets, wall paper, porous tiles, etc. should be avoided.

The colour of the test site and equipment must be neutral (white or light gray) so as not to influence the evaluation of the beer. Lighting is also a crucial factor, especially when evaluating the appearance. The lighting of the test room should be uniform, shade-free and controllable. Lamps with a color temperature of approximately 6500K are recommended. When tasting, one should avoid evaluating beers within two hours after lunch. The best time to conduct this type of tests is between 10:00 p.m. and lunchtime, or later in the afternoon, although this may vary from taster to taster, depending on their biological rhythm.

The ideal moment for the tasting is when the taster is more awake and his mental abilities are at their maximum.

How the surroundings may affect the sensory perception

The way we perceive a beer depends on many factors, mainly appearance, aroma (odor/fragrance), flavour (taste, aromatics, chemical feelings) and palate. These can be influenced by physiological and psychological aspects which may be decisive for a correct analysis of a beer. There are numerous factors that can lead to an erroneous assessment of a sample. Let’s look at some common examples:
  1. Group effect – when a good beer is put in a group of mediocre beers, the rating will be lower (and vice-versa);

  2. Central tendency error – tasters tend to rate the beers in the center of the scale, avoiding very high or very low scores;

  3. Expectation error – if you are told you will be drinking a Westvleteren XII, the expectations about the sample will be very high. To avoid preconceived ideas, details about the sample should be minimal;

  4. Mutual suggestion – happens when a reaction of a person influences the perception of the other;

  5. Lack of motivation – some testers might be uninterested and in consequence put less effort on the experiment.

Many other psychological constraints may influence the development of a sensory analysis experience. But in addition to these, there are other factors that may impact sensory evaluation of beer. For instance, the serving temperature, the glass, the serving order, cultural factors or mental fatigue. Even adaptation might be a problem, through the decrease in sensitivity to a given aroma or flavour due to continued exposure. Or, of course, if the panelist is ill, is a smoker, just drank coffee or had a heavy meal.Unfortunately, in Portugal there has been no academic tradition associated with this discipline. Sensory analysis is mostly regarded as a curiosity amongst consumers, even though the industry considers these methods highly beneficial, cost-effective and easy to apply for large or small businesses. It provides objective and subjective feedback data to enable informed decisions to be made. The growth of the craft beer industry worldwide, the importance of understanding a product characteristics and the identification of consumers preferences has helped to bring new attention to this science in many countries. Hopefully the same will happen in Portugal.

Cider’s history in the New World is a series of events that twist and turn with the rapid expansion and tumultuous social changes that have shaped American history. While relatively unknown to the modern American consumer, cider was the drink of choice for the first several centuries of European settlement in the original thirteen and Canadian colonies and earliest frontiers.

The beginning of cider

The history of cider in the United States begins with the most American of holidays, Thanksgiving. When the Pilgrims arrived in Plymouth Bay Colony in 1620, they found themselves in a strange and unforgiving land and completely out of ale. Anyone who has experienced a Massachusetts ice or snow storm can imagine the sadness of an imminent winter without proper food, shelter, or drink to keep spirits and bodies warm through the harsh New England winter. Even though nearly half the colony died in the first winter, human creativity flourished, and the first year saw them making ‘beer’ with pumpkins, parsnips, and corn stalks. This was not evidently a big hit, and with a lack of barley or grapes for traditional beer and wine, cider quickly became the Plymouth colony favorite drink.
The absence of barley and grapes, used for Old World traditional alcoholic drinks, encouraged cider’s popularity in the new settlements.
There has been some debate over whether native wild apples existed prior to English colonization or whether they were left by explorers and fisherman along the New England coast who had arrived and been conducting business on the coast up to a hundred years prior to the Pilgrims landing. Either way, grafts and seedling apple trees from England quickly made the transatlantic voyage with the early settlers and spread across New England and the Mid-Atlantic seaboard.
George Washington invited the entire delegation out for pints of cider the night before the 1761 election, and swept the election the following day.

Forty miles to the north of Plymouth Plantation, a man by the name of William Blackstone settled himself on a small island called Shawmut. He arrived alone and began homesteading until the arrival of John Winthrop and his group of Puritans arrived and settled across the river from him. Blackstone planted the first known orchard in the United States on Shawmut Island on a ‘Beacon Hill.’ Today Beacon Hill and Shawmut island would be scarcely recognizable, as Beacon Hill is now the most exclusive neighborhood in Boston, lined with 18th century townhomes.

Shawmut is now the heart of the Boston financial district, filled with historical sites, such as the Boston Massacre site and Fanueil Hall. Blackstone has largely been forgotten for his role in Boston history, overridden by the Puritan settlers who began flooding Massachusetts Bay Colony in the mid-1600s, but his trees began to spread by seedlings and grafts across the colony. Cider quickly became the most popular drink of Massachusetts and New England due to the Puritan aversion to harder alcohols and inability to source much else for.

William Blackstone planted the first USA orchard in Shawmut island, Boston, presently located in the heart of the city’s financial district.

The importance of cider in the political life of the USA

Over the next 150 years, orchards and cider presses sprung up from Quebec to Virginia to fuel the desire for cider. By the time of the American Revolution, cider was an entrenched facet of American culture. George Washington launched his political career in the colonial Virginia House of Burgesses and lost his first election in 1755. Learning from his mistakes, he invited the entire delegation out for pints of cider the night before the 1761 election, and swept the election the following day. Thomas Jefferson touted the superiority of American varietals and ciders as the equals of the best of Champagnes and grew some unique varieties such as the Talliaferro and Esopus Spitzenburg, as well as the well known Newtown Pippin. In Paris, he wrote back home to his friend, “They have no apple to compare with our Newtown Pippin.”John Adams recommended ‘cyder’ to be aged at least two or three years, touting it a salubrious beverage well suited to keep a person in good health. His wife Abigail Adams managed the farm during his politicking years and their African American servant James was the cider master for the household. By the dawn of the United States in 1776, cider was close to peaking in popularity and consumption in the New World. Orchards grew at the forefront of the new American attempts to conquer the frontier as the young nation grew and pushed further into the continent.

Many of us have certainly came across the terms ‘Old World’ and ‘New World’ wines while exploring the world of wine, either by participating in wine tastings, reading that interesting review by our favourite wine critic or eventually from that wine nerd friend who only drinks New World wines.

The truth is that the two terms are not always completely understood and often used in a confusing way even within the wine industry. On top of that, the modernisation of the wine world and the ‘flying winemakers’ movement worldwide led to the production of New World wines by style in Old World countries by tradition and vice versa. If I say that Portugal is an Old World country that can produce New World wines would you be surprised? Probably yes, so let’s break it down.

Geography

The first and most basic distinction between both styles is geographic. The Old World countries are mainly located in Europe and Middle East, which includes Portugal, Spain, France, Greece, Germany, Austria, Italy, Georgia, Iraq or Romania among few others. It is generally believed that that domestication of the Vitis vinifera (grapevine used for winemaking) started in this region and that’s where the winemaking roots go deeper.
On the other hand, there’s a group of countries with a more recent wine history where Vitis vinifera was introduced by the explorers and are referred as New World. In this group we have Australia, New Zealand, United States, Chile, Argentina, South Africa, China or Uruguay. To put it in a simple way, if it is not an Old World it will be a New World territory.

Wine styles and the influence of tradition and winemaking philosophy

The geographic location and characteristics of a certain region (such as weather or soil, well known as terroir) have a direct input on the wines’ styles and this could be differentiated by tasting. As a general rule, not always true, the Old World wines come from cooler climate regions and their profile can be described as lighter-bodied, more tannic and acidic, lower alcohol content, savoury, leaner, rustic and earthier.

In the regions of the Old World the tradition and centuries of history take place and the winegrower and winemaker input is heavily regulated by laws, emphasizing the place from where it comes and limiting the human intervention and creativity. Each region is regulated by standards and systems or ‘protected designation of origin’ to which winemakers and wineries must comply. In Portugal these regulations are under the Denominação de Origem Controlada or DOC (similar to the French Appellation d’Origine Contrôlée – AOC) and start right in the vineyards, establishing permitted varieties, crop yields and vine conduction systems and finishing on the final product, regulating alcohol content or ageing times and methods.

When we jump to a New World region the change in the winemaking philosophy and wine styles can be immediately noticed. The wine is not seem as much as a legacy and culture heritage, but more like a product of science, where technology and modernisation take place and winemaking is opened for experimentation and evolution.

Every step of winemaking tends to be controlled in an extended way and a more analytical approach is taken. The ‘optimum ripeness’ of the fruit is measured to decide the harvest date, the must is inoculated with isolated yeast to offer a predictable wine profile, stainless steel tanks are used and have an integrated temperature control system that allows a precise control of the fermentation temperature within an accuracy of 0.1°C or less, the Carbon Dioxide (CO2) and Dissolved Oxygen (DO) concentrations are taken as critical during the life time of a wine, the wines are bottled under screw cap instead of cork (the greatness of the screw cap in the wine world will be reviewed in one of my next posts), just to name a few.

Another important characteristic of the New World regions is that they are often located in warmer climates (once again, not always true), which associated with the heavily winemaking input tend to produce riper, bolder, full-bodied, fruit-forward, higher in alcohol, richer, oak-influenced, more polished and cleaner wines.

The influence of oak, brought by prolonged contact with the cask, is normally more prominent in New World style wines.

Labelling

The last big difference between Old and New World wines is the labelling and it all comes down to the tradition and history of the regions mentioned before. The Old World wines are generally labelled only with region, appellation or vineyard and this information is so important that we can deduce grape varieties and eventually the quality of the wine. The classy red Burgundy is a Pinot Noir, the famous Italian Barolo is just a Nebbiolo and if it is a great Portuguese white from Monção e Melgaço we can expect a 100% Alvarinho.

In the New World everything is slightly different once again. Stating the variety and winery in a clear way is the most important thing and almost mandatory. The not so strict regional laws allow the winegrower/winemaker to grow any grape variety anywhere they want to, there’s more chance for experimentation and the consumers in these countries are mainly focused on the variety and less from where it comes.

I started this article stating that ‘Portugal is an Old World country that can produce New World wines’ and if you got this far you probably now understand what I mean. As a Portuguese winemaker working in Australia I feel that the line between Old World and New World is being blurred, the wine world is evolving fast and there’s more crossover between the two worlds than ever in the past. Should we put a savoury and structured Baga from Bairrada in the same bucket as a bold, jammy, strongly American oak-influenced Syrah from Alentejo in the same bucket just because they are both made in Portugal? No. If I ever use these terms to describe a wine it would be purely based on the style.

The India Pale Ale (IPA) is surely the most famous style at the moment in the world of beer. Go to the market and you will find an abundance of India Pale Ales, Session IPA’s, Black IPA’s, Belgian IPA’s, Imperial IPA’s…to name a few. One might naturally ask why are IPA’s everywhere – could hops be addictive?

To really understand IPA’s, we should travel to the 18th century.

Welcome to the 18th century British India and to the trading attractiveness of the East. Here, powerful trading companies, like the East India Company (EIC), possess important commercial warehouses to trade commodities with the rest of the World, provisioning the colonial army in parallel. Back in the subcontinent, British settlers are looking for a refreshing taste of home and are everything but pleased with the stale, infected beer coming from the Mother Land. Taking at least six months to travel to India, and having to cross the equator twice, the Pales and Bitters of the day, with low alcohol and lightly hopped, did not stand a chance.

 

IPA’s tipically make use of generous amount of flavour and aroma hops, such as Citra or Amarillo, which provides them with their characteristic fragrant hop intensity.

Back in London, close to the EIC’s docks, the ingenious Bow Brewery is establishing a new style of beer, with higher original gravity, intensely hopped and designed for maturation for at least one year. The owner, George Hodgson, has also come up with a business approach that granted extended credit to the beer purchasers, favouring his new beer over the big breweries product. Unexpectedly, this rough, highly attenuated beer matured remarkably well with the scorching heat and arduous journey of the supplying transcontinental ships, making this beer a tremendous success among its consumers in India. Hops preserving characteristics are well known, and the higher concentration of alpha acids made IPA’s fit for journey while mellowing.

From this moment on, other British breweries, such as Burton located ones, would start to replicate Hodgson’s successful style of pale ale, acquiring important business status over the years and condemning Bow Brewery to the oblivion. The India Pale Ale was born, soon migrating to the American continent by the hand of John Labatt. The hop addiction was starting.

The evolution of a style

Today, an IPA is tipically defined as a beer with around 6% of alcohol, 60 IBU’s, not necessarily pale and surely with a lot of different shapes. If the classic English style may be somehow more balanced, American IPA’s are their eccentric brother, ‘showcasing modern American or New World hop varieties (…), with a clean fermentation profile, dry finish, and clean, supporting malt, allowing a creative range of hop character to shine through. (BJCP, 2015). The popularity of IPA’s brought them to the forefront of brewing innovation, with Witbiers, Red Ales or Sour Beers being adapted to the IPA profile and pleasing the craving of beer connoisseurs; new styles of IPA are constantly being designed, such as the New England Indian Pale Ale (NEIPA) or the Brut IPA.

India Pale Ale is the perfect example of how a beer co-evolves over time and how a specific style becomes a hit. The hop phenomenon is worldwide, not only in the USA or the United Kingdom, but also in Spain. When I started brewing, in Catalonia, only one of the fellow breweries was making IPA’s; now practically all the breweries of Catalonia and Spain are brewing IPA’s and it surely is the more successful style. You may not like the craft IPA from the local brewery, but the hops assertive bitterness, spectacular aromas and surprising flavours will provide an untedious experience, and you are likely to come back for more.

Tea is a passion. Tea is an experience and an endeavor to untraveled worlds. I asked myself what would I say If I only had one chance to talk to people about tea? The present piece is the combination of what I love, with who I am, a biochemist concerned with nature, animals, and people, for a better world.

After water, tea is the most consumed beverage worldwide. The tea plant is native to China and it has been long known to Chinese for its medicinal properties. In fact, tea was used as a medicine in former times being adored by Emperors and recognized by Taoists and Buddhists as a precious element in ones’ lives. Nowadays, tea has also been recognized by the scientific community as a substance with outstanding health properties and benefits, with thousands of scientific papers being published throughout the years. Tea health benefits include, but are not limited to, cardioprotective effects, antioxidant, anticarcinogenic and antimicrobial properties. However, concerns about tea consumption are also rising within the literature. Tea health concerns are essentially related to the presence of pesticides and Fluoride (F).

The high temperatures involved in the brewing of tea may extract more contaminants from the plant into the drinking water.

Pesticides are used to prevent tea crop diseases and the attack of some tea loving insects to improve the yield of the crop and the farmers’ profit. Some of the reported negative effects on human health related to the exposure to pesticides during normal daily life habits involve gastrointestinal, neurological, carcinogenic, respiratory and reproductive problems. Pesticides are of special concern in tea due to several reasons.

The organic choice

Tea is a highly sensitive crop and therefore a heavy mix of different pesticides can be used to preserve it. As the leaves are not washed prior to processing, residues present on their surface are not removed. Also, since tea is brewed at high temperatures, the extraction of pesticides into the drinking water is high. Additionally, as some teas are consumed in powder, like matcha, the whole leaf is ingested, making sure that not only the water-soluble pesticides are ingested, but also the less or non-water-soluble ones as well.

On the other hand, fluoride accumulates in tea plants after being absorbed from the soil. The ingestion of F has been related to hypothyroidism, neurotoxicity, fluorosis, arthritic disease, and musculoskeletal disorders. Fluoride accumulates mostly in tea leaves, especially inside the old ones. Fluoride is quite soluble in water and will easily be present in your favorite cup of brewed tea.

As there is not yet an ideal balance between the economic interests and health protection, is there something we can do to avoid the exposure to these tea contaminants and benefit from the remarkable health properties attributed to tea? Yes! Definitely!

Organic teas are the best choice when you do not know where your tea is coming from. Besides being controlled for pesticides, organic teas have also shown lower levels of fluoride. A direct relationship has been found between low quality tea and higher concentrations of F. In the case of tea, the price is generally a good indicator of its quality.

If you brew your own tea at home, you can drink a cup of tea for as cheap as 0.05€ a cup, sometimes even cheaper than a cup of bottled water! Cheaper tea, usually available to the mass market, is made from the oldest and lower quality leaves, which means they most probably have a high fluoride concentration.

Alternative ways to minimize the ingestion of contaminants

Different types of tea, such as white tea made with the youngest leaves, can also be naturally absent from fluoride, as it tends to accumulate in old leaves. If you still have old batches of tea that you don’t want to waste, you can always try to minimize the concentration of contaminants by washing your tea. There is an old tradition when drinking loose leaf tea which consists of rinsing and discarding the first water in contact with the tea leaves. This process started many centuries ago when tea processing was not quite refined as now, and it aimed at washing off dirt or dust.

Considering fluoride and the solubility of some pesticides in water, if you are drinking non-organic, poor quality tea, rinsing the tea first can be a good option already proven by some studies to reduce the level of contaminants, although not 100% efficient, and at the expense of major flavor loss when dealing with low quality teas.

Choosing a good quality organic tea is still your best option. 

As a concluding remark, although not faced with Hamlet’s striking dilemma on life or death, when confronted with:

To tea, or not to Tea?

My answer is: To Tea with Education.

Sources

Tea and Health: Studies in Humans (2013) in Current Pharmaceutical Design
Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture (2016)
In Frontiers in Public Health
Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review (2017)
in International Journal of Environmental Research and Public Health
Fluoride content in tea and its relationship with tea quality. (2004)
in Journal of Agriculture and Food Chemistry
Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand (2017)
In Journal of Environmental and Public Health

A conversation where bacteria and fungi are mentioned usually triggers a red alert in our head since they are associated with some mean diseases. However, when we look back in history, the activity of yeast and bacteria were essential for our lifestyle, being the major responsible for many tasty foods and beverages that were and still are part of our culture.

Imagine a world without bread, beer, wine, cider, coffee, mushrooms, pickles…it would be for sure less interesting! It is estimated that there are one trillion different species of microorganisms on Earth, which shows the tremendous variety of bacterial and yeast species.

Beer fermentation is the process where the sugars coming from the malt are converted into alcohol and carbon dioxide by the activity of yeast and in the absence of oxygen. Traditionally, beer fermenting yeasts can be divided in two types: ale and lager.

 

The pre-activation of yeast, where multiplication and yeast mass increase takes place, is a fundamental step for an healthy alcoholic fermentation of wort

Ale yeast

In the old times they were defined as top-fermenting yeasts since their cells would be collected from the top of the fermentation vessel. The most relevant yeast is Saccharomyces cerevisiae (also called brewer’s and baker’s yeast) and it requires fermentation temperatures around 18ºC – 22ºC (64ºF – 72ºF). In comparison to a traditional pale lager, ale beers usually display a fuller body and more intense fermentation-derived flavors. In some cases, there will be a more dry and crispy character, which can give an unique combination to that beer.

In my opinion, the versatility of ale yeast is a strong advantage when comparing to the lager, which makes it possible to use for a large variety of beer styles: amber ale, brown ale, stout, porter and, one of my favorites, Indian pale ale. The traditional wheat beers from Germany (Weißbier) and Belgium (witbier) fall also in the ale category, where specific ale yeast types that give that nice banana and herbal aromas are chosen!

Lager yeast

The most common lager yeast is Saccharomyces pastorianus, which is a hybrid of two Saccharomyces strains. This means that its general characteristics are like those of the ale yeast but the optimal conditions for fermentation and the resulting beer will be different. Lager yeasts were defined as bottom-fermenting organisms because the cells were collected from the bottom of the tanks after fermentation. However, that distinction does not make sense in the current processes where conical vessels are used and both yeast types are collected from the bottom. Thus, lager yeast is currently associated with “cold fermentation” since it is done at temperatures between 7ºC – 15ºC (45ºF – 59ºF). This temperature slows down the metabolism of yeast which results in longer fermentation times.

Due to their lengthy fermentation and lagering period, the fermentation-derived flavors will not be as evident as in the ale types. The combination of malt and hops is the greatest contributor to the aroma complexity we can find in some lager beers such as the Dunkel Bock or the Saaz-seasoned Czech Lagers. Lager beer is the world’s most sold type of beer, being a fresh golden tone drink ideal to refresh the beer lovers like us.

Sour beers

In the recent years there has been a trend of intense flavors and aromas in beer, with high levels of bitterness but also acidity and sourness. The sour beers, where the lambic type is included, are made by spontaneous fermentation. This means that there is no controlled addition of yeast under sterile conditions, but you make usage of the natural yeast and bacteria present in the surroundings instead. In the old times, Belgium beers were all made in this spontaneous manner and it would take a few years to have a relatively stable beer production.

Among several types of bacteria and yeast, Lactobacillus, Pediococcus and Brettanomyces are the most relevant organisms for this kind of beer, producing acidity and giving that sour, dry and tart profile like sometimes you find in wine. Currently, it is possible to make this kind of sour beers in a more controlled way and you can even buy blends of these bacteria and yeast to produce a sour beer at home.

The variety of yeast and bacterial strains will increase more and more in the next years and many craft brewers are isolating their own blends of yeast and bacterial strains, which can give unique flavors and expand the range of beer styles. If you are already brewing, what are your favorite yeast strains and how did you choose them? Tell us your yeastperiences in the comments below.

Sources

CFER Labs