CFER Labs has collaborated with Why Not Soda on the technical development of their first flavour, Lemon’Mate. We had the chance to interview Nils Schwentkowsi (NS), the company co-founder and business manager, and ask him some questions about the company’s vision, business model and, also, his feedback about the collaboration with CFER Labs.

CFER: So the market for craft sodas in Germany is well established, but in Portugal you found that was a big gap. Can you tell us a little bit more how “why not soda” started and how consumers presently perceive the brand?

NS: I saw the soft drink market in Germany changing massively during the last 20 years. Until I went to university there were only the big brands like Coca Cola and Pepsi, but then one, two, three alternative producers appeared on the market with more sophisticated ways of production, with more interesting flavors or just more interesting stories to tell. And now the shelves in regular supermarkets are full of different options. My wife and I we both became soda-fans, because the soda had less and less sugar and became more and more natural with new, interesting flavors.

We have been in Portugal many times before we moved here. We love the country, its people, its nature. But one thing we were missing and we could not find: There were no real alternative sodas on the market. Only these artificial ones full of sugar. So we decided: why not make better sodas here in Portugal – interesting flavors with only natural ingredients, less sugar, bio-certified. And so we did. We left our career, quit our secure jobs and told our friends that we would move to Portugal with our two little daughters to become soda producers without even speaking the language. You can imagine that most of them stared at us saying: why? Well, you know our answer: why not! We believe that one should constantly look for new experiences. They do not necessarily have to be as life-changing as ours. But new experiences make you grow personally and make you feel alive. This is also what we want to transport with our brand and our story.

So, we had a slight feeling how to start without having any experience in this sector. We developed the recipe for our first flavor in the kitchen and then went to professionals to help us to have the right recipe for production. We found suppliers and very important a place to bottle here in Portugal, the fantastic guys from Cerveja Vadia. In June 2018 we produced our first batch, in August already the second. The feedback we received was super positive. Customers loved the refreshing and natural taste and the fact that it had less sugar.

In the end of 2018 we won a StartUp-Accelerator by Startup Lisbon and since then we are constantly growing in numbers of clients and sales. We won clients from the Algarve to the north and were listed in Go Natural as well as Continentes Innovation Food Lab. During the Startup Programm we also met the CEO of Delta Cafes, Rui Miguel Nabeiro. He liked our spirit, speed and most importantly the product. So we decided to run a sales trial in 2019. And now we started working together on a regular basis and they will start to distribute our products. We feel very just very honored to experience all of this – and of course motivated to keep on going. We will launch two more flavors in March and will start a whole family of Craft Soda, which we plan to constantly grow over the next years.

CFER: How do you feel the craft soda market will evolve over the next years both in Portugal as in Europe?

NS: Customers are looking for more “better-for-you-options”. They are more conscious about what they consume, but not in an extremist way. They still want to enjoy their lives. And we can also see a tendency towards the identification with local brands. Experience is what consumers are looking for in new products – especially the younger Generations. We deliver the right product for these demands. We use only natural, high quality ingredients, lower sugar and of course bio-certified. We produce in Portugal and we give fruits that everyone know and interesting twist in flavor for new taste experiences.

In northern Europe craft soda or alternative soft drinks are already a big thing and we are the first ones to bring this trend to Portugal. Well, the big player will always play a dominant role, but there is room for smaller producers to position themselves on the market. But most importantly, besides all market potential, for us it is just a lot of fun to develop, produce and sell soda. It is a product with a good spirit. We love it.

The brand has started with a single refreshing flavour, Lemon’Mate, which is made with bio-certified, high quality ingredients. in

CFER: As a research and innovation company, CFER is helping brands like Why Not reaching the market with even more innovative foods and beverages, while supporting their technical development. Could you describe us the importance of CFER as a technical partner during your trajectory up so far?

NS: As said before, we had help of professionals to make our ideas and recipes ready for production, because making soda in the kitchen is not the same as producing millions of bottles. Of course we are not there yet, but soon, of course. When we arrived here in Portugal we needed someone here, we could challenge our new ideas with, do adjustments to existing recipes, try new ingredients from new suppliers our just talk about questions of production processes. Craft soda making is constant work in progress, because you have to come up with new ideas and make your business better and better. So, we were looking for a partner we could exactly do all these things with. In CFER and especially in you, Daniel, we found a guy who knows what he is doing and we enjoyed running the first smaller project. We can recommend your service for young companies who want to do the next step, but also for bigger fishes, because you guys also have some good ideas.

CFER: As a F&B start-up founder competing on a global, demanding market, how important do you consider product innovation to be in order to gain competitive advantage over similar products?

NS: The interesting aspect about craft soda is that you always have to come up with new flavors – may they stay in your portfolio or just be a seasonal edition. It is like with the craft beers. Go to a Taproom, it is full of interesting references. As a craft soda producer, I feel with soda it is the same. The creative, the innovative win.

The collaboration with CFER Labs has helped the company to improve the first flavour of Why Not, Lemon’Mate. in

CFER: How do you see your brand expanding in the next five years? Are there any strategic, international markets for “why not soda”?

NS: Of course, we have our strategic plan and there are interesting markets, but first we need to make our homework here in Portugal and work hard. If you can make it here, you can make it everywhere. We want to win the Portuguese for our soda experience.

CFER: Many thanks for your time. We wish prosperous growth for your business and we are looking forward for many more exciting “why not soda” flavors!

NS: Live long and prosper – drink more organic craft soda made in Portugal, why not!

Cover picture: in Dinheiro Vivo (Reinaldo Rodrigues/Global imagens)

As most of the foods we consume today, the product consists not only in the edible part but also in the packaging. In the immense world of packaging, the most used material is plastic, due to its good mechanical properties, flexibility, low weight and cheap cost of production. A recent study shows that the global production of plastics was raised from 2 million tons in the 1950’s to 348 million tones in 2017 and 359 million tons in 2018(1). However, in all stages of plastic’s lifetime, from extraction to recycling, a great amount of greenhouse gases are produced. While these gas emissions aren’t the only problem related to plastics, one of the biggest issues are the micro and nano plastics freed during its degradation in natural environment. These microplastics harden the CO2 absorption from the oceans, promoting an atmospheric CO2 regulation imbalance, ultimately climbing the food chain and potentially affecting the human health.

How can we prevent plastic misuse?

There are three possible destinies for all the waste we deposit in the plastic recycling container:

  • Being actually recycled, renewing packages and other useful sub-products;
  • Being incinerated for energy reuse;
  • Being dumped in a landfill.

Of course, the landfills are the worst possible solution, and thus the most avoided one. A 2017 study(2) shows that in Europe are produced about 25 million tons of plastic, and of those 25 million, 39.5% were incinerated, 30.8% end up in a landfill and just 29.7% are really recycled. A promising method uses Polyethylene (PE) as a carbon source for the production of Carbon Nano Tubes (CNT’s) by a laboratorial technique called Chemical Vapor Deposition (CVD).

What are carbon nanotubes? 

CNT’s are emerging as powerful, flexible and resistant semiconductors. Their industrial application will seriously upgrade solar cell’s yield in photovoltaic panels, the production of display devices like TV screens, touch screens, transistors and others, increasing lithium ion battery’s yield and much more(3)(4)(5).

Carbon atom’s bounds are very strong and for that reason the mechanical properties of carbon nanotubes are also very strong, allowing future ropes and cables to be extremely strong, almost unbreakable.

Small fibers of nanotubes could be used as reinforcement agents of composite materials, increasing their resistance to traction or flexible forces.

How are CNT’s produced?

There are several ways to produce carbon nanotubes but the most promising method, in terms of scalability, is the method of Chemical Vapor Deposition (CVD) (6).

On a controlled environment, little fragments of low-density polyethylene (LDPE) are chosen. Then, they are heated to temperatures between 600oC-1000oC (7) and they are mixed with a catalyst that reduces the boiling temperature of LDPE. Once boiling, the vapor is transferred to another chamber where the temperature is lower. This will force the vapor to condensate. In the presence of a catalyst like a sheet of graphene, the rich carbonaceous vapor slowly deposits its carbon atoms onto the graphene surface forming nanotubes.

However, the growth control of this structures is still very limited. It is hard to estimate what is going to be the length, width and direction of these tubes, and that is still a challenge that needs to be surpassed so that the full potential of carbon nanotubes can be put to use.

This method is presently only developed in a laboratorial enviroment, but it is the most likely to be scaled in a near future due to its lower applied temperatures. Other methods, like laser ablation, employ much higher temperatures and demanding conditions.

Carbon nanotubes can be the raw material needed for the production of innovative, highly resistant materials.

Other solutions 

Recent advances in bio-fabrication technologies have led several startups to grow exponentially over the last decade, some of them focusing in plastic replacement.

A great substitute of Polystyrene (PS) consists on the compaction of a specific species of mushrooms. It is almost equal to polystyrene, but biodegradable. It was developed by the American company Ecovative and early adopted as packaging solutions for Dell’s products, accommodating technologic products such as computers and accessories. It was later adopted by IKEA in 2016.

As replacement of ethylene, small seaweed-based plastic bubbles were developed, and these can be used to encapsulate every kind of sauce or stable liquid, like water or juice. Being an edible and biodegradable packaging solution, created by Notpla, many fast food chains and retail markets have adopted the invention.

There is still a lot to be done, especially regarding consumer education. General population needs to be educated and informed about what is happening around the world, what are the consequences of inaction, what are the conditions where food is produced and with critical thinking decide if the simple act of buying a specific food can be harmful for someone or something, somewhere on the other side of the world.

There’s a great need to fight ignorance and lack of reliable information, not only in poor countries but also in rich and developed ones. Many companies and public entities work daily to provide knowledge and information to the general public and CFER Labs is one of them.

Written by André Azevedo –

(1) Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. (2020). (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138.
(2) Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58.
(3) Grace, T., Shearer, C., Tune, D., Yu, L., Batmunkh, M., Biggs, M. J., … Shapter, J. G. (2017). Use of Carbon Nanotubes in Third-Generation Solar Cells. Industrial Applications of Carbon Nanotubes, 201–249. 41481-4.00008-3
(4) Jiang, K. (2017). Carbon Nanotubes for Displaying. Industrial Applications of Carbon Nanotubes, 101–127.
(5) Fang, S., Shen, L., & Zhang, X. (2017). Application of Carbon Nanotubes in Lithium-Ion Batteries. Industrial Applications of Carbon Nanotubes, 251–276.
(6) Wu, X., Mu, F., & Zhao, H. (2019). Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. Journal of Materials Science & Technology.
(7) Ahmad, M., & Silva, S. R. P. (2020). Low temperature growth of carbon nanotubes – A review. Carbon, 158, 24–44.

The year of 2019 reinforced our desire to continue our mission to create ever better, healthier, more natural and greener foods and beverages. From multinational producers to new entrepreneurs on the international food scene, CFER has been able to meet the challenges posed by its customers by constantly meeting targets and exceeding expectations.

With over 20 new projects and 5 new products on the market developed by our team, 2019 was a year of affirmation, growth and development of business relationships that we are truly proud of; within these, we have welcomed many partnerships with new entrepreneurs, with whom we have so enthusiastically been exploring the creation of exciting new products and the stimulation of new business models in the food and drinks business.

The year ahead is full of ambitious goals. We are attentive to new markets and the possibility of starting CFER’s presence in them, especially those that focus more on innovation and food technology. We also want to strengthen our involvement in healthy lifestyle communication initiatives, based on a diverse and balanced diet, where innovation can play a central role. The year of 2020 will also mark the year in which we will launch our first ingredients and products on the market, with a clear focus on the natural and organic, clean-label, vegan / vegetarian and functional food sectors; for this, CFER counts on its strategic partners that will ensure the commercialization and distribution of the products that are being gradually crafted by our innovation team.

Many reasons make us dream with a 2020 packed with many exciting challenges, achievements and criative moments. Let us toast to a great 2019 and to an exciting 2020 designed by new horizons.

Daniel Abegão
Founder of CFER Labs


CFER Labs is now a certified food and drinks research and development company. The distinction, attributed by the Portuguese National Agency of Innovation (ANI), aims to recognize the top scientific institutions in Portugal, their unique R&D methodologies and breakthroughs and the social impact of their scientific work.

How clients may benefit from this certification

While the present recognition from ANI is a clear clear proof of the quality of the company’s scientific work, clients with fiscal HQ in Portugal may benefit from a tax credit that may reach 82.5% of the total sum involved in the collaboration, according to the SIFIDE programme. Also, when applying for R&D public funding together with CFER Labs, applications will be distinctively valued and majorated up to 15% of the total eligible sum.

CFER Labs collaborates with companies expert in tax credit and building of applications for SIFIDE and R&D public funding, such as Portugal 2020.


Proteins are basic supplements for the human body. They are essential for proper maintenance and growth of the human body. Vegan protein powders are one of the major factors influencing the protein supplement market growth, as a result of rising population of flexitarians in U.S. and Canada. If you have ever thought that a ready-mix, vegan protein powder would be a great addition to your portfolio, check how we, at CFER Labs, would be a great partner for this project.

According to Transparency Market Research, protein powder was the dominant product segment within protein supplements and accounted for a market share of 68% in 2017, on account of predominant consumption among gym professionals.  Protein powders are powdered forms of protein that come from plants (soybeans, peas, rice, potatoes, or hemp), eggs, or milk (casein or whey protein). The powders may include other ingredients such as added sugars, artificial flavoring, thickeners, vitamins, and minerals. The amount of protein per scoop can vary from 10 to 30 grams.

Rapid innovation for manufacturing products containing an extensive range of amino acids and focus on functions, such as muscle repair, weight loss, energy balance, and satiety, is expected to create immense potential for market growth, and vegan protein powders are a clear rising star.

Characteristics of vegan proteins

Vegan protein sources normally lack lysine or methionine. [1] Grains are low in lysine, while legumes are low in methionine, both essential amino acids. Combining proteins is one way to ensure getting adequate amounts of essential amino acids. Almonds exhibit between 20 to 25g of protein per 100g. Like legumes, almonds are notably poor in methionine and lysine, however, almond protein is considered to be highly digestible. [3] Whole sunflower seeds exhibit 10 to 27g of protein per 100g, while the dehulled seed holds a higher amount of 20 to 40g of protein per 100g. [4] [5] Compared to other vegetable protein sources, sunflower seeds contain low or no antinutritional factors (e.g., protease inhibitors, cyanogens, goitrogenic factors, lectins, etc). Sunflower seeds are rich in acidic and aromatic amino acids and low content in lysine and sulfur-containing amino acids, like cysteine or methionine.

Both almond protein and sunflower protein are highly water soluble, which is important for the development of ready mix protein shakes.

Pea protein is an example of a complete protein which contains all the necessary amino acids, including BCAAs, which are effective in muscle building and fast absorption. [2] This segment is expected to account for 20.3% of total market share by the end of 2025 owing to its growing popularity among vegetarian and vegan population. Furthermore, this type of products is expected to remain a favorable choice for individuals allergic to egg or dairy proteins.

The vegan protein powder to be developed can also guarantee a further point of distinction by having an antioxidant capacity superior to other products, given it is made by using plant based proteins and extracts, rich in polyphenols and antioxidant vitamins. [6]


[1] S. S. Arya, A. R. Salve, and S. Chauhan, “Peanuts as functional food: a review,” J. Food Sci. Technol., vol. 53, no. 1, pp. 31–41, 2016.
[2] “69_461.Pdf.” .
[3] S. Ahrens, M. Venkatachalam, A. M. Mistry, K. Lapsley, and S. K. Sathe, “Almond (Prunus dulcis L.) protein quality,” Plant Foods Hum. Nutr., vol. 60, no. 3, pp. 123–128, 2005.
[4] S. González-Pérez, “Sunflower Proteins,” Sunflower Chem. Prod. Process. Util., pp. 331– 393, 2015.
[5] P. Ivanova, V. Chalova, L. Koleva, and I. Pishtiyski, “Amino acid composition and solubility of proteins isolated from sunflower meal produced in Bulgaria,” Int. Food Res. J., vol. 20, no. 6, pp. 2995–3000, 2013.
[6] E. Arab-Tehrany, M. Jacquot, C. Gaiani, M. Imran, S. Desobry, and M. Linder, “Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids,” Trends Food Sci. Technol., vol. 25, no. 1, pp. 24–33, 2012.


CFER Labs has been invited to participate in UP By Wabel, a trade show for the food, drinks and beauty industries, taking place in the prestigious Carrousel du Louvre, Paris, in the next 27th and 28th of June of 2019. The show focuses on natural, clean-label and sustainable foods, drinks and beauty products, matching ‘new brands with international retailers, distributors, food services, specialized stores, concept stores, media and influencers from all over the world.’

Save the date – CFER Labs oral presentation in UP By Wabel

The company will deliver an oral presentation in UP By Wabel in the 28th of June at 1PM – How to create the next best Food & Drinks references – Research to create more natural products. The presentation, and the concept behind the show, focus on CFER Labs vision for tomorrow’s food and drinks marketplace.

As a company delivering exciting food and drinks innovation, CFER Labs believes the show will be a fantastic opportunity to meet international companies and entrepreneurs in the food and drinks business that could be looking for the next great innovation in the field.

Schedule your meeting with CFER Labs in UP By Wabel

CFER Labs is looking forward to meet you in UP By Wabel. Contact via to schedule a meeting.


Kombuchawhaaat? If you have never heard about this beverage, do not be afraid! The pronunciation is easier than it looks and it is tastier than it sounds! Kombucha is a beverage that results from the fermentation of black or green tea leaves and cane sugar with several bacterial and yeast species – a Symbiotic Culture Of Bacteria and Yeast (SCOBY). Kombucha is one of the rising stars in the revival of specialty fermented beverages that has been taking place in the market over the last recent years.

The rise of fermented beverages, both in variety and production volume, has been defined as one of the most important trends in 2019 within the food beverage sector. To give you a more objective picture, the global fermented beverages market is expected to increase steadily until 2023, reaching 935 billion euros (in 2015 it was valued at 600 billion euros). The beverage consumers and the millennials generation in particular have a high interest on experiencing novel and unusual flavors together with different textures and the fermentation process can strongly influence those characteristics.

What makes kombucha unique

But why is Kombucha so special within the large variety of fermented beverages? Kombucha is a low-sugar tea-based fermented beverage with considerable levels of organic acids, vitamins and polyphenols, known for their health benefits. By adding fruit, herbs or flavors into this mixture you get a quite unique and refreshing beverage that is, most often, sparkling and non-/low-alcoholic. Kombucha can have a drier and/or tarter character like the traditional ciders or the “Brett” beers and the production of alcohol can also be boosted by adjusting the fermentation conditions (if alcohol is higher than 4.5% it is referred as Hard Kombucha). The explosion of flavors present in Kombucha can be quite overwhelming in the start due to its high acidity but quite addictive afterwards. The definition of Kombucha is quite broad and there is a great variety of flavors and profiles in the market at the moment, going from soft-drink like beverages with low sugar and high drinkability to more dry and acidic beverages that can be in the direction of sour beers or dry cider.

Tea and sugar are two central ingredients for the production of kombucha

One of the best parts about Kombucha is that you can produce it at home with a very limited amount of kitchen gear, no fancy equipment being needed.

There are several dedicated websites with infographics and videos that can be very helpful before you do your first Kombucha brew, where more detailed explanations about the gear required as well as recipes and how to find and get the SCOBY. In a simplistic way, the production process of kombucha requires two fermentation steps:

  • Primary fermentation:the mixture of yeast and bacterial species converts the sugar into ethanol and organic acids. At the start of the process, oxygen is present (aerobic conditions), which promotes the cell division of the yeast species and later conversion of sugar into ethanol and carbon dioxide (CO2). The type and proportion of yeast species varies from SCOBY to SCOBY but SaccharomycesBrettanomyces, Pichia and Hanseniaspora are some of the most common ones. When sugar is depleted, ethanol becomes the most abundant carbon source, which promotes the activity of the different bacterial species that will convert it into organic acids. Species belonging to the genus AcetobacterGluconobacter and Lactobacillus are the major responsible for the production of acetic acid, gluconic acid and glucuronic acid. Acetic acid, that gives vinegar aroma and taste, is normally the most abundant organic acid when the primary fermentation is finished. At the beginning of the process the SCOBY will be at the top of the flask and during the fermentation it starts to sink, forming a new SCOBY at the top. Thus, at the end of the primary fermentation you will have two SCOBYs that can be used for two new batches of Kombucha.
SCOBY – The Symbiotic Culture Of Bacteria and Yeast that is responsible for the formation of unique flavors and aromas in Kombucha (Image from BUCHI,
  • Secondary fermentation: the Kombucha from the primary fermentation is filtered to remove the major particles and then flavored by adding fruit, juices, herbs, spices and/or others. The sugar addition from the flavoring step will promote the anaerobic fermentation of yeast, resulting in the formation of carbon dioxide (CO2) which naturally carbonates the final beverage. When this step is made directly in the bottle – bottle fermentation – it can be tricky since you need to calculate how much CO2 will be produced from the sugar added during flavoring. The first time you may get an over-carbonated beverage with too much fizz.

Even though there are many reports regarding the positive impact of Kombucha on the digestive system and gut health together with its action as anticarcinogenic, antihypertensive, antidiabetic, and hepatoprotective, it is important to note that currently, Kombucha cannot be granted with any official health claims. I believe that in a near future some concrete results from clinical studies will give a more accurate information regarding the active functionalities of Kombucha.

Kombucha flavoring step (image from ifoodreal, https://

The Kombucha presence in the European market is still limited when comparing with the United States, where this fermented beverage can be found throughout the whole country. The implementation of Kombucha in Europe requires some more consumer education since it is a beverage with a unique and acquired taste, but it is clear that more and more people are becoming aware of its existence and benefits. Next time you see some Kombucha in a shop or pub, go for it and give it a try! Soon after there is a high chance that you will be planning your first brew of Kombucha at home.

Coton, Monika, et al. “Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods.” FEMS microbiology ecology 93.5 (2017).
Professional Kombucha Brewers Workshop, Barcelona (2019).
Jayabalan, Rasu, et al. “A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus.” Comprehensive Reviews in Food Science and Food Safety 13.4 (2014): 538-550.
Dutta, Himjyoti, and Sanjib Kr Paul. “Kombucha Drink: Production, Quality, and Safety Aspects.” Production and Management of Beverages. Woodhead Publishing, 2019. 259-288.

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.

Food sauces are one of the most important condiments in the human diet and gastronomic culture around the world. The almost endless combinations of flavors, textures, and colors, as well as the sensorial characteristics that consumer feels savoring food sauces, make these products one of the most consumed and important for the economy in food industry. The food sauces market generated US$120 billion in 2016, with a trend to increase in the next years.

Products for human consumption need a careful evaluation of all physico-chemical properties and sensorial characteristics.

Rheology is the study of deformation and flow of matter under well-defined conditions and is an important tool to characterize fundamental material properties of food systems. Rheology applied to food processing and product design is an area with a huge impact due to the important information obtained. Food rheology is essential for:

  • quality and stability control
  • design flow and handling systems
  • sensory evaluation of food

Rheological and mechanical properties like consistency, degree of fluidity and flow, are the most important parameters to be determined in food sauces and will be important to determine how stable the final product will be and how long it can be stored. Rheological studies of fluid foods are so important that developments in the fields of process engineering application, equipment design and transport system are based in these results.

Rheological properties of food sauces

Food sauces are a complex mixture constituted essentially by water or oil. Hydrocolloids have an essential role in food sauces formulation once they will be responsible for viscosity control and stability of the formulation, prolonging shelf-life. Sauces are semi-solid foods, behaving as soft solids or non-Newtonian fluids and exhibiting pseudoplastic flow with a distinct yield stress and thixotropic (time-dependent) behavior.

Rheological characterization is essential to quantify the functional relationships between deformation, stresses, and the resulting rheological properties such as viscosity, elasticity or viscoelasticity. Viscoelastic properties play dominant roles in the handling and quality of the sauce. Such properties are not only dependent on time but also on processing temperature, solid contents and other ingredients used in many types of formulations.

Usually food sauces are shear-thinning (pseudoplastic) fluids and exhibit a yield stress, defined as the stress that must be exceeded for flow to occur. The consistency index, apparent viscosity, yield stress are important product properties. Thus, the rheological parameters are a useful tool in understanding changes in food structure during processing, to control the quality of the product and to consumer handling with the product. Within rheology, the oscillatory rheological method is the most popular method to characterize viscoelasticity, since relative contributions of viscous and elastic response of materials can be measured.

Main rheological parameters to determine in the quality control of food sauces

  • Viscosity

Viscosity is an important property of fluid foods. It is defined as the internal friction of a liquid or its ability to resist flow. As viscosity changes the flow properties of a liquid food changes and influences the appearance and consistency of a product. Viscosity of a food sauce is affected by factors like temperature, concentration of solute, molecules and suspended matter; it can be used as an indicator of quality by the final consumer, as in most cases a thicker food sauce is thought to have superior quality when compared to a thinner product.

Like most fluid foodstuffs, sauces show complex rheological behavior. Sauces like mayonnaise and ketchup are sold in different containers including the traditional glass bottle or plastic squeeze dispensers, so controlling the different dispensing properties is necessary. When used in a glass bottle, the sauce is not expected to flow freely until the bottle is agitated. In the plastic bottle, on the other hand, the sauce should flow when a gentle squeeze (pressure) is applied for several seconds. In general, mayonnaise and ketchup exhibit pseudoplastic behavior with a flow threshold, presenting thixotropy (shear stress dependence on the time of shear); also, the decrease in the oil content of mayonnaise normally lowers the viscosity of the final product. In Figure 1 is depicted the dependence of viscosity on shear rate, or applied motion – a higher shear rate will promote a lower viscosity and flow.

Figure 1 – Flow comparison between two commercial ketchups – both products exhibit a lower viscosity when the applied motion is higher, which is necessary for the product to flow.
  • Yield stress

Yield stress is a physical and rheological property for liquid and solid materials. Yield stress determination is an essential property of food sauces and it is a measure of the strength of the material structure, being defined as the minimum stress required to make a material flow. Pseudoplastic materials behave as solids under small applied stresses, and as liquids at high stresses. Figure 2 relates stress with strain, highlighting the yield stress as the moment when the material cannot hold more elastic deformation and flow begins.

Figure 2 – relation between stress and strain for a pseudoplastic food; the yield stress represents the moment when the elastic deformation reaches a limit and flow ensues.

In practice, the yield stress of products such as mayonnaise, ketchup, salad dressings, etc, represents the force that has to be applied by the user in order to break down its structure and initiate its dispensing. Since no more relevant stress is applied after reaching the yield point, and the material is left to rest over time, its structure rebuilds, becoming solid again.

Yield stress is also a key product characteristic which determines its texture, and thus the consumer sensory perception during use and application.

  • Polymer behavior, stability and shelf-life

Oscillatory time sweeps are important when testing materials, such as dispersions and polymers, that may undergo macro or micro structural rearrangements with time. These rearrangements directly influence rheological behavior. Oscillatory time sweeps directly provide the necessary information about how a material changes with time.

By oscillatory time sweeps of food sauces, it is possible to determine possible polymer degradation, solvent evaporation, dispersion settling, cure information and/or time dependent thixotropy of formulations. Oscillatory tests give important information about food sauces stability and shelf-life, once the evaluation of the material’s behavior with time can be monitored directly with variation of frequency and the temperature of interest.

By oscillatory time sweeps one may measure two parameters: G’, referent to the “storage” or “elastic” modulus and G’’ referent to the “loss” or “plastic” modulus.

Figure 3 – Oscillatory time-sweep showing a relationship between viscosity, G’ and G”. When the G’ is superior to G”, the food sauce will have a solid-like behavior, which will become a liquid-like behavior from the moment G” becomes superior than G’.

A stable formulation with no structural modifications is represented in a plot as shown in Figure 3, where the G’ and G’’ are independent (the formulation maintains its fluid characteristics). On the other hand, if the food sauce formulation is not stable, and its identity varies with variation of frequency or temperature, the G’ and G’’ will cross.

Instruments for rheological measurements

The increasing social and economic importance of food production, together with the complexity of production technology, processing, handling and acceptance of these highly perishable and fragile food materials require a more extensive knowledge of their physical properties.  There are numerous instruments available to the food industry to measure viscosity for quality control and thus ensure that products made are of consistent quality. These commonly-used viscometers are capable of measuring Newtonian and non-Newtonian fluids in a wide viscosity range. The consistometer determines the consistency of a food by measuring the distance it flows under its own weight. Rotational viscometers measure the torque required to turn a spindle in a sample of fluid at a known speed. Capillary viscometers, also known as U-Tube or Ostwald, measure the time for a fluid to pass between two points of a capillary tube under the force of gravity.

Once food sauces are subjected to variations in their temperature during production, transport, storage, preparation and consumption, and taking into account the influence of the overall properties of the final product, e.g., taste, appearance, texture and stability, rheological characterization is essential  to optimize processing conditions and improve product quality.


Food dispersions includes emulsions such as milk, cream, sauces, etc. The main characteristic of these foods is the presence of small particles, and the consequent high interfacial area between the particles and the continuous phase. The properties of food colloids are defined by the interactions among the particles.

Food emulsions consist of an oil phase containing hydrophobic compounds and an aqueous phase containing water-soluble compounds. One phase is dispersed into the other, defined as oil-in-water emulsions or water-in-oil emulsions, dependently if water or oil are the continuous phase, respectively. Emulsions are thermodynamically unstable, and phase separation can be deaccelerated or even prevented through kinetic factors. The origin of destabilization is based on gravitational force, attractive and repulsive forces among the particles, etc.

The destabilization can then be seen by creaming, flocculation, and coalescence. In addition to these, emulsion phase inversion and Ostwald ripening are phenomena that can happen in emulsions. Creaming is a phase separation caused by the upward migration of droplets due to density difference between phases. Flocculation is the aggregation of droplets due attractive forces. Coalescence is the merging of droplets.

The dispersion of water in oil for the production of mayonnaise is one of the most known examples of food emulsions.

Stokes Law and phase stability

Even in apparently stable systems, with a shelf life of several years, the number and size of droplets change with time. Stokes’ Law gives the creaming / sedimentation rate for an isolated, rigid, uncharged droplet: U=2/9 R2dρg/η. R stands for the radius, dρ for the density difference, g for gravity and η for viscosity. Creaming may be considered as negligible compared with Brownian motion when U is less than 1 mm/day. Stokes’ Law shows how to prevent or minimize creaming: i) Reduction of droplet size, for instance by the addition of considerable amounts of amphiphiles such as surfactants, or by the use of homogenizers at high operating pressure. ii) Reduction of density differences between the phases. Density difference between the oil phase and water phase is, depending on other factors, about 50 kgm-3. While the density of large droplets is similar to the oil phase, very small droplets have a density closer to that of the aqueous phase. iii) Tuning the viscosity of the continuous phase, by adding polymeric thickeners, for instance gums. iv) in the moon.


While Portugal is now seeing some signs of Spring with longer and warmer sunny days, Australia is well through Summer and with the 40 plus degree days behind us Autumn is just around the corner. In a wine production country this means that the busiest time of the year has arrived and it is vintage time! For us winemakers the long vintage days are the most exciting time of the year, when we finally get the grapes in the winery and eventually manage to turn them into (good) wine. But it is also one of the most critical stages of the whole winemaking process when the decision of what and when to harvest needs to be taken. In this review we will focus on what happen during the late stage of the grape development (maturation) and its relation with the harvest timing.

I work in the Clare Valley (Australia) mainly with ‘international varieties’, such as Riesling, Pinot Gris, Shiraz or Cabernet Sauvignon, which all grow in the same region and pretty much under the same conditions, but that ripen at different time in the season (in some cases up to 1-2 months apart). By the time that you read this article we should have harvested all our Pinot Gris but the Cabernet will be hanging on the vines for a few more weeks, so how do we decide what and when to pick?

The biological cycle of the grapevine is a set of physiological and biochemical changes triggered by temperature, sun exposure, hormones, water availability, etc, that starts early in the Spring with bud burst and finishes late in the Autumn with leaves fall, just before the vine goes through a period of dormancy during Winter.

What happens during each stage of the grapevine life cycle can potentially influence the quality of the wine, but it is the late stage of the berry development or maturation (ripening) that deserves more attention from a winemaking point of view.

Maturation is a growth phase that lasts from 35 to 55 days that follows the herbaceous growth and véraison and is characterized by some of the most noticeable changes in the grapes: pronounced berry growth, sugar accumulation, decrease of acidity/raise of pH and accumulation/changes in phenolic compounds and aromatic. We are able to look at these changes and use that information as a precious tool to predict maturity dates and establish the picking dates.

In the ripening stage the berries accumulate sugar and lower their organic acid concentration, with dramatic changes in the profile of the phenolic compounds and aromatics.


The sugar content of the grapes is an important physiological parameter to access maturity and harvest timing as it defines the potential alcohol of the wine. During the herbaceous growth its concentration is similar to the leaves, but from véraison onwards there is a massive transport and accumulation of these carbohydrates in the berries. The sugar synthesis occurs in the leaves as a product of photosynthesis and migrates to the berries in the form of sucrose where it is hydrolyzed to glucose and fructose. The last two are the main sugars in grapes and as the season progresses their concentration gets to a point where they become the predominant total soluble solids in the juice, reason why sugar accumulation/ripening traceability is often based on density measurements (density, Baumé or Oechsle). It is not commonly used, but the glucose/fructose ratio can be a maturity indicative as it markedly decreases during the grape development until it remains almost constant at maturity (about 1:1).

White grapes generally ripen at lower sugar levels than red grapes and consequently the alcohol content of white wines is lower than reds once fermentation is completed by yeast (conversion rate of approximately 17g/L of glucose/fructose for 1% alcohol).

Acids and pH

Tartaric and malic acid are the two major acids present in grapes and responsible for the biggest fraction of the total acidity. The tartaric is rapidly accumulated in the berries during the herbaceous growth and remains almost constant during maturation; on the other hand, malic acid concentration declines during the ripening period and the ratio tartaric/malic varies drastically. The rate as the malic acid is metabolized depends on the variety and climate, but it is one of the main reasons why cool climate regions tend to deliver fruit with higher total acidity comparing to warmer regions. As the total acidity drops and some cations accumulate in the berries, the pH raises. The pH plays a crucial role in the microbiological and chemical stability of juice and wine it is also taken into account. At maturity the pH of white grapes is normally under 3.3 and 3.6 for the reds, and the total acidity between 5.0-8.0g/L of tartaric acid equivalents.

If you add a few drops of vinegar or lemon juice to your salads (acidification), this seasoning will make it taste better. The same could be thought for the importance of the acidity in wine. When in the balance, the acidity is the backbone of the wine, bringing brightness and freshness and lifting up other flavors.

Phenolic compounds and aromatic substances

The synthesis and accumulation of anthocyanins in the skins is the most visible expression of grape maturation in red grapes; behind the scenes, another phenols play a crucial role on the phenolic ripeness: the tannins. Tannins are present both in the skin and seeds and as season progresses they become less extractable and less astringent, more ‘round’ and pleasant. A potential good wine starts with a good assessment of the phenolic ripeness of the grapes, as it impacts the structure, mouthfeel, astringency, aromatics and ageing potential of the wine.

It is also during the maturation stage that the aromatic potential of the grapes develops and accumulates, mainly in the skins. These molecules can be free volatile aromatic compounds or non-aromatic precursors that will later be released by yeast during fermentation. Sometimes it may be hard to access the aromatic potential of the grapes at a given time, but we know how it can change during maturation. A good base wine for sparkling is produced with grapes harvested earlier in the season, not only to retain a higher natural acidity/low alcohol, but also because the aromatic profile is more neutral. Riesling or Touriga Nacional harvested later in the season originate wines with more floral expression.

Generalized graphical representation of grape berry compositional changes during development and ripening (from Watson, 2003)

The maturity point of the grapes is directly related to the style of the finished wine and can potentially limit its quality. Monitoring the parameters mentioned above as the grapes ripening progresses is a fundamental procedure to define a desired maturity point and decide the harvest date. Variety, soil, vineyard practices and growing conditions all influence the life cycle of the grapevine, so defining an exact maturation point is in reality difficult and quite subjective. However, if we can get the maturation to a point where all the parameters are in balance to a desired style then we are potentially in a good position to make a good wine!

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.

Environmental pollution caused by industry has increased in last decades. The industrial chemical processes use mainly volatile and inflammable organic solvents and require high time and energy demands. In addition, currently, the techniques used have low extraction efficiencies and poor selectivity. The focus of scientists is now the development of more sustainable and environmental friendly chemical processes for the production, extraction and purification of biomolecules and bioactive compounds.

Ionic liquids have emerged as a promising alternative solvent since they are known by their non-flammable, non-volatile and recyclable character, being many times called green solvents. Since Paul Walden described the first ionic-liquid (ethylammonium nitrate) in 1914, the ionic liquids became one of the major scientific area of research and the number of papers addressing their outstanding properties has exponentially increased from a few to more than 5000 in the last 20 years.

In this piece I will describe ionic liquids from a clinical point of view; specifically, I will evidence how ionic liquids may be important in the diagnosis industry. In a further piece, I will describe the surprising applications that ionic liquids have on the food and drinks industry.

What are ionic liquids?

Ionic liquids are salts constituted by large unsymmetrical organic cations and organic or inorganic cations. Due to this asymmetry they not easily form a crystalline structure and they are liquid salts at low (<100ºC) temperatures. The ionic character associated to ionic liquids is responsible for their negligible vapor pressure, non-flammability and high chemical and thermal stabilities. In addition, ionic liquids are recognized by their excellent solvation ability for a wide range of compounds and as a good stabilization media for biological molecules such as proteins. Moreover, ionic liquids are recognized as tunable designer solvents, a result of the possibility of choose the cation and anion constituents offering a large number of ion combinations and the possibility of designing specific solvents allowing the development of more effective extraction and purification platforms.

Ionic liquids in clinical and pharmacological fields

Aqueous biphasic systems (ABS) are, in general, two aqueous solutions of structurally different compounds separated into two coexisting phases where, above a given concentration, one of the phases will be enriched in one of the solutes and other in the second one. Below this concentration both phases are miscible. The mono- and biphasic region of each ABS is usually depicted in a phase diagram with a binodal curve separating the miscible and immiscible region.

Phase diagram example of an IL-based ABS.

The partitioning behaviour of a protein among the coexisting phases of an ABS is a complex phenomenon but a lot of attention has been given to the extraction, purification and concentration of proteins and other biomolecules of clinical interest using ionic liquids as phase-forming components of aqueous biphasic systems, in particular, a specific type of ionic liquids.

Proteins stability is highly affected by the pH of the medium and this specific type of IL show self-buffering capacity at pHs among 6-8. Being aware of this property, researchers developed a patent pending single-step platform to extract and concentrate prostate specific antigen (PSA), a prostate cancer biomarker. However, the PSA measurement requires the use of blood in a laborious and expensive techniques. Using ABS composed of ionic liquids lead to the total extraction of PSA to the ionic liquid-rich phase and, by reducing this one, it was concentrated samples of urine with PSA up to a factor that allows their measurement in a less expensive and laborious approach such as a simple HPLC analysis. In addition, HPLC analysis have shown that different PSA isoforms could be measured allowing the use of urine for primary or complementary prostate cancer diagnosis and evaluation, what can be a revolution in methodologies of cancer for early detection. There are a lot of cancer biomarkers, and by using specific ionic liquids, it could be possible to achieve a platform where a mixture of ILs is employed in an ABS composed of ionic liquids and urine to, in a single step, measure all of biomarkers related to each type of cancer. This will thus lead to a cheaper, non-invasive, and much more reliable early detection of cancer.

Graphic representation of the use of IL’s for the purification and concentration of PSA.

Besides, attention have also been given to the use of ionic liquids in pharmaceutical industries in the production segment as a way of reducing the use of environmentally hazardous and toxic organic solvents, and as a way of reducing the pollution, recovering drugs from wastes valuing them.

ABS composed of ionic liquids were found to be a successfully platform to extract morphine and the vasodilator papaverine (extraction efficiency of 96%).

Antibiotics, such as tetracycline, penicillin G or ciprofloxacin were also studied. In one investigation, penicillin G was extracted from a filtered fermentation broth with extraction efficiencies of 90%.

Studies regarding the purification and valorization of pharmaceutical solid wastes proposes new strategies to reuse them as an alternative to incineration. An integrated platform for the recovery of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen and ketoprofen was conceptualized and involves 3 steps: extraction and purification of NSAIDs using IL three phase partitioning systems; precipitation of the drug using antisolvents; recycle and reuse of solvents. The results shown extraction efficiencies of approximately 84% and isolation efficiencies higher than 75 %, what are promising results not only because of the possibility of reuse and recycle the components, but also because of their low cost.

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.


[1]      Z. Lei, B. Chen, Y.-M. Koo, and D. R. MacFarlane, “Introduction: Ionic Liquids,” Chem. Rev., vol. 117, no. 10, pp. 6633–6635, 2017.[2]      F. A. E Silva, M. Caban, M. Kholany, P. Stepnowski, J. A. P. Coutinho, and S. P. M. Ventura, “Recovery of Nonsteroidal Anti-Inflammatory Drugs from Wastes Using Ionic-Liquid-Based Three-Phase Partitioning Systems,” ACS Sustain. Chem. Eng., vol. 6, no. 4, pp. 4574–4585, 2018.
[3]      K. Ghandi, “A Review of Ionic Liquids, Their Limits and Applications,” Green Sustain. Chem., vol. 4, no. 1, pp. 44–53, 2014.
[5]      S. P. M. Ventura, F. A. E Silva, M. V. Quental, D. Mondal, M. G. Freire, and J. A. P. Coutinho, “Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends,” Chem. Rev., vol. 117, no. 10, pp. 6984–7052, 2017.


Energetic drinks are, without a question, one of the hottest topics in the food industry right now. However, in a time where a considerable fraction of the population shows stress symptoms, energy drinks might not be the answer your customer is looking for.

A relaxation drink is defined as a non-alcoholic beverage that contains calming ingredients. These drinks are growing in popularity and rely on the use of nutrients and herbs to reduce anxiety and promote relaxation. Sleeping drinks are also a growing trend in consumption, relying on slightly different natural components to induce the consumer a sensation of sleepiness and promoting a longer and more relaxed sleeping. Both types of drinks act by regulating a complex hormonal response in the consumer.

Stress, anxiety and sleep

Stress and anxiety are two major factors affecting the population. Stress is a condition arising from external physical or mental overload. It can make a person feel embattled, nervous, anxious or otherwise less capable of full and normal response to environmental demands.
Anxiety is a generalized mood of fear, worry and or uneasiness. It can be stimulated from environment factors, or result from bad habits or social situations. In developed countries, anxiety disorder rates range from 13.6% to 28.8% of the population. [1] The growing
urbanization, lack of exercise and stressful quotidian are bringing stress and anxiety to historical levels. Anxiety and stress may lead to insomnia, depression or even suicide.

Sleep plays a vital role in brain function and systemic physiology across many body systems. Problems with sleep are widely prevalent and include deficits in quantity and quality of sleep; sleep problems that impact the continuity of sleep are collectively referred to as sleep
disruptions. Disruption of sleep is widespread.

A 2014 survey conducted by the National Sleep Foundation reported that 35% of American adults rated their sleep quality as “poor” or “only fair”.

Trouble falling asleep at least one night per week was reported by 45% of respondents. In addition, 53% of respondents had trouble staying asleep on at least one night of the previous week, and 23% of respondents had trouble staying asleep on five or more nights. [2]

The hormonal regulation and possible ingredients for relaxation and improved sleep

Adaptogens are herbs that improve an individual’s ability to cope with stress and anxiety. These herbs normalize the physiological process of the body and help the body adapt to changes in times of increased stress, normally by reducing the serum cortisol levels, the stress hormone. A recent study discovered that Ashwagandha root extract safely improves an individual’s resistance towards stress and improves self-assessed quality of life by substantially lowering cortisol levels. [3] Other herbs, such as linden, hops or chamomille are also considered to be adaptogens in this regard. Chamomile is widely regarded as a mild tranquillizer and sleep inducer. Sedative effects may be due to the flavonoid apigenin that binds to benzodiazepine receptors in the brain. Studies in preclinical models have shown anticonvulsant and central
nervous system (CNS) depressant effects respectively. Clinical trials are notable for their absence, although 10 cardiac patients are reported to have immediately fallen into a deep sleep lasting for 90 minutes after drinking chamomile tea. [4]

According to American researchers [1], there are different types of anxiety that could be mild or sever depending on the level of the disorders. Using drugs is a common but harsh way to treat anxiety disorders. More natural treatments including amino acid, minerals, and fatty acids
ingestion can reduce anxiety and induce relaxation. Further, herbs and botanical medicine, such as St. John’s wort (Hypericum perforatum), Ginkgo biloba, Kava Kava, which have different roles to reduce many psychiatric disorders, also reduce anxiety.

In this regard, anxiety may be managed without the harsh side effects of pharmaceuticals using nutritional and botanical treatment as well as life-style changes.

Vitamins C, D, and E, omega-3 fatty acids, and the green tea amino acid L-theanine are dietary supplements known to increase the production of dopamine. Japanese researchers have found that the ingestion of 50 to 200mg of theanine promotes the generation of α-wavesin the brain some minutes after being ingested. α-waves have been studied as a relaxation index state in humans [5]. Theanine also lowers body temperature and blood pressure, two important factors in the relaxation process absent from drowsiness.

Drugs that alter serotonin levels are used in treating depression, generalized anxiety disorder and social phobia. Monoamine oxidase inhibitors (MAOIs) prevent the breakdown of monoamine neurotransmitters (including serotonin), increasing concentrations of the
neurotransmitter in the brain and promoting a sensation of relaxation and happiness. MAOI’s may be synthesized or natural. Herbs, spices and nutrients can inhibit MAO enzymes without the unpleasant side effects of antidepressants, examples being the nutmeg extract, the
passionflower, curcumin or black pepper extract. [6]

Herbs, spices and nutrients can inhibit MAO enzymes without the unpleasant side effects of antidepressants.

The sleep-wake cycle and its modulation

Both dopamine and serotonin play a non straightforward role in mammals’sleep-wake cycle and wakefulness/relaxation sensations. Dopamine can inhibit norepinephrine, causing the subject to feel more alert. Serotonin is involved in wakefulness, sleep onset, and preventing REM sleep.

Serotonin is required to produce melatonin, a hormone that plays a major role in sleep. The production and release of melatonin in the brain is connected to the time of day, increasing when it’s dark and decreasing when it’s light. Melatonin production declines with age.
Consumers use melatonin for sleep disorders, such as insomnia and jet lag. Unlike with many sleep medications, it does not promote dependency, habituation or experience a hangover effect. It is available as an ingredient for food and drink fortification. Melatonin can be used to treat delayed sleep phase and circadian rhythm sleep disorders in the blind and provide some insomnia relief. Valerian root extract is also a major sleep promoter, safely administered in food and pill forms.

Further, supplementation with the amino acid L-tryptophan and its precursor, 5-HTP, and the B vitamins, vitamin D, selenium, and omega-3 fats increases serotonin production. Tryptophan may increase agreeableness, decrease quarrelsomeness and improve mood. Although purified tryptophan increases brain serotonin, foods containing tryptophan do not. This is because tryptophan is transported into the brain by a transport system that is active towards all the large neutral amino acids and tryptophan is the least abundant amino acid in protein. α-Lactalbumin, a minor constituent of milk, is one protein that contains relatively more tryptophan than most proteins, and milk brands are taking advantage of this situation to incorrectly claim that milk promotes a better sleep through tryptophan ingestion.

α-Lactalbumin, a minor constituent of milk, is a protein that contains relatively more tryptophan than most proteins, and milk brands are taking advantage of this situation to incorrectly claim that milk promotes a better sleep through tryptophan ingestion.

Gamma-aminobutryric acid (GABA) is a major chemical signalling molecule in the process of relaxation/sleepiness and is becoming a trendy ingredient in the food industry. A randomized, single-blind, placebo-controlled crossover-designed study was conducted to evaluate the effect of GABA on sleep. Sleep was evaluated by electroencephalography (EEG) after oral GABA administration. GABA significantly shortened sleep latency and increased the total non-rapid eye movement (non-REM) sleep time. Questionnaires showed that subjects receiving GABA realized its effects on sleep. [7] Dietary GABA supplement in clinical studies relieves anxiety and increases alpha brain waves, which are associated with relaxation.

The bottom line

The sensation of relaxation and sleeping promotion are interconnected. However, some ingredients, whether natural or synthetic, may be more adequate for a specific application, and regulatory laws may soon be imposed in incipient markets. In a further piece we will explore how regulatory laws may be applied to this sector and the market size for this type of innovative drinks.

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.


[1] E. Alramadhan, M. S. Hanna, M. S. Hanna, T. G. Goldstein, S. M. Avila, and B. S. Weeks, “Dietary and botanical anxiolytics,” Med. Sci. Monit., vol. 18, no. 4, p. RA40-RA48, 2012.
[2] G. Medic, M. Wille, and M. E. H. Hemels, “Short- and long-term health consequences of sleep disruption,” Nat. Sci. Sleep, vol. 9, pp. 151–161, 2017.
[3] and S. A. K. Chandrasekhar, Jyoti Kapoor, “A Prospective, Randomized Double-Blind,  Placebo-Controlled Study of Safety and Efficacy of a High-Concentration Full-Spectrum Extract of Ashwagandha Root in Reducing Stress and Anxiety in Adults,” Indian J.
Psychol. Med., vol. 34, no. 3, pp. 255–262, 2012.
[4] J. M. Hodgson and K. D. Croft, Tea flavonoids and cardiovascular health, vol. 31, no. 6. 2010.
[5] D. C. Chu, T. Okubo, Y. Nagato, and H. Yokogoshi, “L-theanine – A unique amino acid of green tea and its relaxation effect in humans,” Trends Food Sci. Technol., vol. 10, no. 6–7, pp. 199–204, 1999.
[6] R. Article, “Available online through Natural Monoamine oxidase inhibitors : A Review,” vol. 3, no. 3, pp. 482–485, 2010.
[7] A. Y. Y. P. M. Kim, “Effect of oral γ-aminobutyric acid (GABA) administration on sleep and its absorption in humans,” Food Sci. Biotechnol., vol. 25, no. 2, pp. 547–551, 2016.


Bone broth is made by simmering animal bones and tissue for at least 8 hours with optional vegetables, herbs, spices and salt.

The health benefits of bone broth (or soup) have been long perceived, but only a decade ago was the remedial effect of bone broth scientifically evaluated. For instance, the generally believed curing effect of chicken soup against symptomatic upper respiratory tract infection has been found to follow from an increase in nasal mucus velocity or its mild anti-inflammatory effect.

More recently, bone broth has been increasingly recommended as part of the diets for gut and psychology syndrome (GAPS) patients, such as those with autism and attention-deficit hyperactivity disorder (ADHD). Brand owners and marketeers are supporting the growth of bone broth as a functional product by claiming that it can quell inflammation, speed healing, calm allergies, combat fatigue and promote satiety. These attributes could be attributed to broth’s protein, collagen, gelatin, essential and inessential aminoacids and minerals. Several media and academic references support the positive attributes of bone broth, as shown below:

The Nourished Kitchen – Bone broths are extraordinarily rich in protein, and can be a source of minerals as well. Glycine supports the bodies detoxification process and is used in the synthesis of hemoglobin, bile salts and other naturally-occurring chemicals within the body. Glycine also supports digestion and the secretion of gastric acids. Proline, especially when paired with vitamin C, supports good skin health.

Kettle and Fire – Bones and connective tissue are storehouses for essential amino acids and minerals — which are lacking in many diets today. Bone broth is also an invaluable source of protein, collagen and gelatin.

Medical News Today – Drinking bone broth may be beneficial for the joints and digestive system, among other things. Bone broth is highly nutritious, may protect the joints, may help fight osteoarthritis, may help reduce inflammation and heal the gut, may aid sleep and may support weight loss.

Cognitune – Enhancement of weight loss and metabolism, with fantastic properties regarding detoxification, digestion and weight loss.

A 2017 research study included bone broth as part of a recommendable microbiome restoration procedure.

Brand owners and marketeers are supporting the growth of bone broth as a functional product by claiming that it can quell inflammation, speed healing, calm allergies, combat fatigue and promote satiety. However, the topic is controversial.

On a 2016 piece titled ‘Science Can’t Explain Why Everyone is Drinking Bone Broth’, Time Magazine claims that ‘there isn’t much research on bone broth to support—or refute—these health claims. But several experts on human digestion say the nutrients that supposedly make
bone broth special are not, in fact, all that unique.’ A recent australian research paper advises that ‘If the intake of collagen precursors is proven to support the synthesis of new collagen in vivo, it’s unlikely that bone broth can provide a consistently reliable source of key amino acids.’ More research is needed, and while no source claims its unhealthiness, bone broth seems to contain a fair concentration of protein and minerals, promoting satiety and a warmth feeling. However, it may not be delivering the remarkable nutrition that some entities are claiming, especially due to bioavailability issues and insuficient concentration of the key nutritional compounds for a superior level of functionality.

Evidences seem to suggest that the longer the cooking, the more gelatin and minerals are extracted, a key goal while producing bone broth. The extended cooking promotes the release of aminoacids from bones.

Production of bone broth

While any bone or ligament can be used, knuckles, chicken feet, and femur bones tend to contain the most collagen. Beef, chicken and fish are the most used animals for bone broth production. As with stock, bones are typically roasted first to improve the flavor of the bone
broth. The bones may contain a small amount of meat adhering to them. At the end of cooking, the bones should crumble when pressed lightly between the thumb and forefinger. While the bone broth is being prepared, proteinaceous foamy scum typically bubbles up at the
top of the pot. Removing it helps to clarify the broth and improve its flavor. At the end of the desired time of cooking, the bones and other debris are discarded and the remaining liquid can be filtered or strained for higher purity. After conditioning the final liquid in the fridge, the
natural fat from the broth is typically removed, yielding a brown coloured liquid with a turbid look. The final product is microbiologically unstable, so that a pasteurization/sterilization cycle will be needed to increase the shelf-life of commercial liquid bone broths. The pasteurized broth may display a shelf-life of over 2 years. Optionally, the broth may be dehydrated to a powdered form, allowing for its posterior reconstitution with boiling water.

A growing market for bone broth

According to figures from Global Market Insights, Inc, global broth market is projected to exceed USD 2.8 billion by 2024; according to a new research report by Global Market Insights, Inc. changing consumer preference towards animal-based stock as a protein source will drive broth market growth. Rising health consciousness and high disposable income will support the product penetration. Factors such as rapid urbanization and ageing population are anticipated to propel ready to drink broth market size.

North America broth market will witness growth over 4% up to 2024. High disposable income and trend of ready to eat food due to changing lifestyle will propel regional industry size. Increasing consumer consciousness regarding health benefits associated with stock
consumption over traditional soups will fuel product penetration. Asia Pacific broth market size accounted for over 15% of the industry share in 2016. The regional industry growth is attributed  to large consumer base and increasing spending on packaged food. Increasing working women population in the region is also likely to influence product demand. Development of multi outlet food channels will drive convenient buying of products thus, propelling regional industry growth.

Growing awareness regarding personal fitness among young and adults will fuel broth market size. Improved metabolism, bone strength and enhanced immunity are the key health benefits offered by the product. Increasing popularity of rich nutrient beverages to avoid dependency on medicines and health supplements will provide lucrative opportunities for the industry growth.

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.


D. Hsu, C. Lee, W. Tsai, and Y. Chien, “Essential and toxic metals in animal bone broths,” Food Nutr. Res., vol. 61, no. 1, p. 1347478, 2017.

L. K and H. J, “Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing.,” PLoS One, vol. 12, no. 6, 2017.

F. Seebohm, “The Tribal System of Wales,” 1904

The India Pale Ale (IPA) has become synonymous with craft beer itself. In a previous article I have introduced how the style emerged in the 18th century, and in this piece I will describe the brewing basics of this hop-forward, intense beer style from a personal point of view.

Adjusting the water as a first step

If you would also like to brew your own hop fever, here is how I do it. I start by adjusting the water, that, historically and technically speaking, plays a major role in IPA’s. From a personal point of view, I like to add enough calcium sulfate to the brewing water to bring the calcium to 200ppm and the sulfate to 400ppm, in order to get a clean bitterness from the hops. If you are making a NEIPA, you may prefer using more calcium chloride than calcium sulfate to bring your calcium up, in a reason of 1/2. In mashing terms, I favour a more fermentable wort but I still look for a dash of sweetness and some creaminess in the final product, so I always aim for temperatures below 65ºC (149ºF).

The grist, fermentation profile and hops

Following with the grist, some brewers use pils as their base malts, but pale ale malt is much more traditional, both in English and American styles. The optional use of toasted or crystal malts may bring some complexity and depth of aroma, but generally make a small portion of the grist. My personal touch is to use a small amount of Golden Promise malt, that is similar to Maris Otter, but a little softer and creamier.

I want my fermentation profile to be neutral to lightly fruity, so I use an highly attenuative ale yeast and let to ferment between 18 and 22ºC (64ºF – 72ºF). The best temperature is however 19.5ºC (67ºF), as we can extract the ideal concentration of apple, peach and pear esters without excessive fermentation derived flavour.

Finally, the hops. Here is where the world of IPA’s gets really exciting – and bitter. Hops bring aroma, bitterness and tons of flavour, but different applications bring different results. If you are brewing a hop forward IPA, American style, you should go for American or New World hops, such as Cascade, Citra or Nelson Sauvin, where you will find an abundance of tropical, citrus or piney aromas. Here, you can play with generous late hop additions, dry hopping or hopinating the pouring beer. If you are brewing an English style IPA, with a floral-spicy-peppery-grassy bouquet, you may want to use classic hops such as Golding, concentrating its use in the beginning of the boil and adding some as dry hops to spice things up.

I do like to add a handful of hops in the whirlpool and then dry hopping the beer, which I believe to be the most interesting way to hop IPA’s. There is a lot to choose from.

Hops have been beer’s best friend for a long time, and IPA’s may well be the pinnacle of that friendship. The world has gotten addicted to them, and there is no turning back from this hoppy journey.

What is your favourite IPA and hop variety? Let us know!

Happy IPA’s!

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.


BARRACHINA, Albert (2016).

HUXLEY, Steve (2006). Poesía líquida. Trea.

BJCP (2015).


Tea can be consumed in different ways. The most popular one worldwide continues to be the infusion of the dried leaves, however, solid tea consumption is growing remarkably, especially due to the new matcha (powdered tea) consumption trend. Actually, tea was firstly consumed as a whole leaf instead of simply as an infusion. The leaves were not strained and tossed as we do now, and this allowed the consumers to take advantege of all of the nutricional aspects of the tea leaf, both the water soluble and the insoluble ones.

We might say that we are still in the leaf infusion Era and regarding this matter many questions usually arise. Which one is the best? To use loose leaf or tea bags?

Both have advantages and disadvantages.

Comparing tea quality

Generally loose leaf tea is of better quality than tea sold in tea bags, especially reagarding cheap tea bags, which contain mostly tea dust and tea fannings resulting from the tea leafs processing. However, there are many good quality tea bags which use either tea sourced from cut loose tea leasf instead of the byproducts of the tea industry and some top quality brands that even sell tea bags containing full tea leaves. I usually advise loose leaf tea for heavier tea drinkers as the tea sold in this fashion is hermetically sealed until use, unlike tea bags which can lose flavour and absorb smells very easily.

A common habit, even at speciality stores, is to open the tea container and give it to the client to smell. This is not hygienic at all and should be avoided. In this regard hermetically sealed tea bags can better preserve their flavour than frequently opened tea containers. If you can afford good quality tight containers or are a rather heavy consumer of loose leaf tea this shouldn’t however pose as big as a problem.

An advantage of brewing loose leaf tea is that you can see the beauty of the leafs unfold in hot water, admire how they look like before and after brewing and how they smell. You can also play with the amount of tea you wish to brew making it lighter or stonger. When using tea bags you can play with the flavour only by modulating either the water temperature or the infusion time.

When brewing loose leaf it implies you to have more specialized tea paraphernalia and time. Usually people more inclined to loose leaf teas invest more time in tea education and look for the perfect cup.

Tea bags are normally of a lower quality when comparing to loose, hermetically sealed tea.

Regarding tea bags a lot of debate has been made about the type of tea bag. Many advocate that the pyramidal tea bags are the best as they allow more room for the leaves to expand. While some say this is more of a marketing stategy, there are a few scientific reports regarding the loose leaf vs. tea bag “battle”. A recent study compared single, double and circular tea bags with loose leaf tea. What was found was that indeed leaf swealling is higher for loose leaf, followed by double chamber tea bags, single tea bags and circular tea bags. In another study, researchers found that, althought the kinetics of goodies, i.e., polyphenol content had a faster release time in tea leafs, and independent of infusion time, when adressing tea bags, the polyphenol content was dependent on the infusion time, probably due to the swelling rates verified by the comparing research group. At the end of the day, it all boils down to tea quality.

Would you rather have low quality loose leaf tea or good quality bagged tea? Common sense is always the key? What is you way of brewing tea?

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.


J Food Sci Technol. 2017 Jul;54(8):2474-2484. doi: 10.1007/s13197-017-2690-9. Epub 2017 May 18. “Swelling and infusion of tea in tea bags.”
Avicenna J Phytomed. 2016 May-Jun;6(3):313-21. “Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.).”

Take a few minutes to search in yeast commercial suppliers catalogs and you will quickly find out the large number of different strains that are available for brewing beer and other beverages. Brewing yeast species were initially isolated from nature and later also domesticated in different parts of the world under different environments, which resulted in a variety of yeast strains with great physiological differences. The invention of the microscope had a key role on the initial identification and characterization of the different strains. Nowadays, the continuous development of microbiological and genetic tools along with new analytical techniques has contributed to a deeper understanding of the specific capabilities and limitations of each strain, as well as for the identification of novel yeast types.

Every year the number of fully characterized yeast strains increases and there are a few companies with culture banks that have a great variety of yeast strains: White Labs, WYEAST, Fermentis, Lallemand, Mangrove Jack’s, Imperial Yeast (organic) or CooLAB (organic), among others. In each website, you can find descriptions of each strain that will help you choosing the right strain for the intended beer type.

Start simple

If you are in doubt, start simple and brew with a yeast type which is a “work horse”, meaning that it will efficiently work for a great variety of beer styles. Still, there are some factors important to consider when choosing the yeast for alcoholic fermentation:

Attenuation – how much sugar can the yeast convert into alcohol. Usually, commercial suppliers divide the yeast strains in low, medium and high attenuation, varying from approximately 65 to 85%. The specific attenuation will impact not only the alcohol % but also the mouthfeel and flavor;

Flocculation level – how easy does the yeast cells settle after fermentation. This is an important feature when you wish to re-use the yeast to another fermentation. Besides that, a low flocculation yeast can lead to a lower attenuation, resulting in a worty flavor. On the other hand, if your yeast of choice has a high flocculation, the final beer will tend to be cloudier and you will be able to taste the yeast, like in weißbier or witbier;

Alcohol tolerance – alcohol level that inhibits and potentially kills your fermenting yeast. Choosing a strain that can stand the alcohol percentage you are planning to reach is extremely important, especially in those styles that require a high alcohol % such as Imperial Stout or Belgium Ale;

Temperature – each strain has a range of temperatures where it can grow, and it is important to know both the optimal and the extreme temperatures that the yeast can stand;

Metabolite production and sensoric properties – what kind of flavors and aromas are produced by the yeast strain. There are several metabolites (intermediates or final products of yeast metabolism) that can contribute to the sensoric properties of the finished beer: esters, carbonyl compounds, phenolics, higher “fusel” alcohols and fatty acids:

  • Esters are the resulting compounds from a reaction between an acid and an alcohol, and they are often associated with fruity notes in beer (e.g. ethyl acetate or isoamyl acetate). The specific types of esters formed, as well as their concentration, are strain-specific but the fermentation conditions also influence the ability of the yeast strain to produce them.  For instance, there are reports that high gravity brewing and high fermentation temperatures (20-25oC) result in higher levels of esters (as in some ale beer types).
  • More than 200 compounds with a carbonyl functional group have been found in beer, contributing for both its flavor and stability. Diacetyl and acetaldehyde are examples of carbonyl metabolites and probably the most “unwanted” compounds by brewers (except in some very specific beers), since they are considered off-flavors. Both the formation and conversion rates of those metabolites is strain-dependent, so the time that you will need to get a matured beer will depend on your yeast of choice. This is particularly important in large-scale production where time is a key control parameter.
  • Phenols are commonly associated with a medicinal or spicy aroma, and some specific types add astringency and/or bitterness in the finished beer. For instance, the earthy aroma present in Brett beers (fermented with Brettanomyces yeast) is directly linked to the formation of phenolic compounds.
  • When present in abundant levels, higher fusel alcohols, such as propanol and butanol, can result in fruity, floral and/or wine-like notes. Their formation can have a positive impact in ale beers but normally are not desired in ale types.
  • Fatty acids are essential elements in the yeast central metabolism, but they can also be broken down into staling compounds such as (E)-2-nonenal, which will give a “cardboard” character in the finished beer.
The presence of fermentation derived metabolites brings complexity to the final product, but in some specific cases they can also easily become overwhelming and give off-flavors.

In addition to the points mentioned above, when brewing at large-scale breweries there a few other parameters to consider when choosing the right yeast: stress tolerance, fermentation yield and productivity, mutation stability, among others. These are especially important for the re-usage of yeast in several fermentation cycles, which is a must in large-scale breweries to sustain the economical viability of the production process.

The number of identified and characterized yeast strains will increase more and more over the next years. I personally believe that some unique flavor profiles are yet to be found, and that will consequently expand the range of beer styles. If you are already brewing, what are your favorite yeast strains and how did you choose them? Tell us your yeastperiences in the comments below.

CFER Labs is your partner in food and drinks R&D. Obtain your free of charge workplan by clicking here.



In the present demanding market, where a constant search for foods with high benefit-quality ratio is increasingly taking place, the innovation possibilities often lie in the most common and versatile everyday foods, such as the egg.

Used in almost every aspect of the gastronomy, from confectionery to soups, an egg is an important ally for all chefs and kitchen households. An egg alone is one of the most nutritious and appreciated foods on the planet. It is a high protein and low carb intake food, excellent for those who want a simple, easy and healthy snack, such as the common hard-boiled version. In fact, a whole egg contains a relevant amount of several important vitamins and minerals.

The nutritious egg – the forgotten superfood?

Along with milk, eggs contain the highest biological value for protein. One egg has only 75 calories but 7 grams of high-quality protein, 5 grams of fat, and 1.6 grams of saturated fat. According to the reference daily intake (RDI) nutrient values for a healthy adult, a large egg has vitamin A (19% RDI), responsible for immune system and good vision maintenance and a set of B vitamins, such as riboflavin (42% RDI), pantothenic acid (28% RDI), pyridoxine (9% RDI), folate (11% RDI) and cobalamin (46% RDI), essential for cell division processes and mental health.

Egg yolks are one of the few foods that naturally contain vitamin D (15% RDI), essential for strong bones and muscles, as well as overall health. In fact, the majority of the egg’s vitamins and minerals are located within the yolk. Vitamin E, iron, selenium and omega-3 fatty acids are also found in relevant concentrations in the egg.

The high quality proteins of the egg, essentially albumins, mucoproteins and globulins, contain a set of essential amino-acids like leucine, tryptophan, methionine and other non-essential aminoacids, which will act as precursor molecules in human metabolism. It is also noteworthy the high concentration of choline (60% RDI), an essential vitamin-like nutrient involved in the metabolism of molecules necessary for good neural-muscle function and its control in humans. For muscle building and fitness athletes the ingestion of these nutrients is of extreme importance for cell regeneration and muscle growth.

Cholesterol is perhaps the most controversial nutrient in the egg, one large egg containing more than two thirds of the RDI for this nutrient, currently set at 300 mg. However, several recent studies showed that there is no significant correlation between the egg’s cholesterol and an increase of blood harmful LDL cholesterol levels in healthy humans. The ingestion of one whole egg a day, preferably hard-boiled, is recurrently suggested by nutritionists and medical specialists as an important incorporation in one’s diet.

One whole egg contains an impressive set of nutrients in quite relevant concentrations.

The egg market

From over the 75 million tons of eggs produced worldwide, the Asia-Pacific region represents the biggest market for egg and egg products, being India, Indonesia, Japan and China the key players due to its population and economic growth over the last decades. China alone is responsible for almost 40% of both worldwide production and consumption. North and Latin American regions are also important markets regarding egg products, with USA leading the charts, followed by Mexico and Brazil.

In the European context, according to the last stats of the European Commission for Agriculture and Rural Development, more than 7 million tons of eggs were produced in 2018 within the economic space, where 7 of the 28 members, France, Germany, Spain, Italy and UK, were responsible for over 80% of the total production. If the Russian and Turkey markets were to be included (European countries not in EU) the Economic European Space market would represent twice its actual numbers regarding the egg production and consumption. The Portuguese case represents a modest percentage, with only 0,1 million tons of eggs produced for consumption in the last year. Although lifestyle tendencies such as veganism or higher healthcare awareness are rising in popularity, these do not seem to be threatening the growing tendency of the egg market, especially in the Asian continent.

From farm to table

An average person consumes 180 eggs per year. The majority of these eggs (about 50%) are produced by enriched feed hens in cages followed by barn-raised hens (26%), free range hens (14%) and organic feed hens (5%). The difference between all these eggs raising hens are concerned to their diet and growth space.

Eggshell size, form and specially color are commonly associated by consumers as main characteristics for egg quality, however, this is only dependent on the hens’ breed, size and feed.

Whiter breeds tend to lay white eggs while darker ones tend to lay browner eggshells. As for the yolk, the same applies, being the hens’ diet the major factor responsible for its color. While grain-fed chickens produce pale-yellow yolks, hens fed with rich pigmented and nutritious food from insects, vegetables, fruits and grasses produce deep orange yolks. The real egg quality is given by the age of the hen and its feeding over the growing process, where older hens tend to lay thinner eggshells and shorter shelf-life eggs than younger and nutrient controlled-feed hens.

The hen’s nutrition plays the major role in the colour of the final egg yolk.

Applications beyond breakfast

From cosmetic industry to medicine, the egg components are used in a wide range of areas for remarkably different goals. Nowadays it is easy to find different forms of whole egg, yolk or egg white in retail stores, ranging from solid to concentrated, crystalized, frozen or deep-frozen states. From the yolk is extracted its oil, consisting mainly of triglycerides and other elements, such as lecithin, cholesterol, biotin and xanthopylls. This non-allergic oil becomes free from egg proteins and is therefore allowed for use in cosmetics or dermatological products for hair fall, eczemas or dermatitis. The natural pigments (xanthopylls) present in the yolk, lutein (E161b) and zeaxanthin (E161h), are also of high interest for the pharmaceutical and food industry for their attractive yellow and orange colors.

Lecithin (E322) was actually first isolated from the egg yolk in 1846 by the French chemist and pharmacist Theodore Gobley. This product is currently in high demand due to its emulsifying, lubricant and stabilizing properties, which were commonly obtained with the use of soybean oil. However, EU legislation has been inciting the use of allergen-free natural lecithin food sources, minimizing the use of soybean. Lecithin is also a molecule used in a variety of pharmaceutical and cosmetic products due to its stabilizing capacities and choline enrichment.

Eggs are also used as ingredients for alcoholic drinks, as in the case of the famous eggnog, or as clarifying agents for superior category wines and rich broths. In the pharmaceutical sector, the egg has been used for over 70 years in the manufacturing of flu vaccines due to its concentration of albumins, mucoproteins and other globulins. The eggshells are also a valuable resource for organic agriculture as a source of natural calcium.

The numerous shapes that the egg can assume are a clear representation of its high acceptance and versatility, with verified health benefits at an affordable price.

CFER Labs is your partner in food R&D. Obtain your free of charge workplan by clicking here.

Miranda, J. M. et al, (2015), Egg and Egg-Derived Foods: Effects on Human Health and Use as Functional Foods, Nutrients, vol. 7, 706-729.
Garcés-Rimon M. et al., (2015) Egg protein hydrolysates: New culinary textures, International Journal of Gastronomy and Food Science, vol. 3, 17-22.
Wu Jianping et al., (2014) Eggs and Egg product processing, Food Processing: Principles and Applications, published by John Wiley & Sons,  2nd edition, chapter 19, 437-455.

The final countdown has started and with only a few days to go until we welcome 2019, it’s now time to begin the preparations for the last night of the year. There are a few things to cross off the list like rethink our New Year’s Eve resolutions after another year of messing up, stock up the pantry with raisins, have the loved ones around, organize the fireworks and invite that friend good at blowing up things and… sort out the sparkling wine! People have different ways of celebrating the start of the new year depending on the culture and traditions, but one thing seems to be always in our hand after midnight regardless of who and where we are and it is a glass of sparkling wine. Bubbles seem to sparkle the moments of celebration and on this article we will explore the ‘when, what and why’ of this festive drink.

England or France? The paradox.

Just like many other happy accidents throughout the human history, sparkling wine could be the penicillin of the wine world as there are records of incidental fizziness since Biblical times. However, the product owes its existence mainly to the development of technology unrelated to the production of the wine itself. We must ignore all the faults, accidents and the effervescence attributed to the phases of the moon and focus on the year of 1662 when Christopher Merret stated to the Royal Society in London “our wine-coopers of recent times use vast quantities of sugar and molasses to all sorts of wines to make them drink brisk and sparkling”.

There is an erroneous believe that Dom Pérignon invented sparkling wine in the late 1690s, but Merret’s report a few decades earlier is the first documented proof that still wine was intentionally turned into sparkling by adding sugar and molasses and by that time only England had the required technology to make it: the ability to produce stronger glass and the reintroduction of cork as closures.

A strong glass bottle able to withstand the high pressure of sparkling wine is mandatory and England was able to produce it in the early 1600s by using coal-fired glass furnaces at much higher temperature instead of wood-fired ones used in France, only able to produce structurally weaker glass. Also, it is essential to use a closure able to withhold the pressure and back in the XVII century it was cork. Cork was lost during the decline of the Roman Empire and only rediscovered by France in 1685 at the earliest, but England was shipping bottled wine from France sealed with corks decades earlier in the XVI century.

England had advanced glass technology in the early XVII century, which led the country to surpass the French competition.

It is clear that England had the knowledge and the means to produce and preserve the effervescence of a sparkling wine, the paradox (and what makes everything much exciting!) is the fact that they were making it with wines shipped from… Champagne! The primary fermentation in this cold region in the north of France would prematurely stop because of the low temperatures late in the season and naturally restart a few months later in the warmer spring days.

The process

It took a few decades to get to the product with the characteristics as we know in our days, essentially to understand and optimize the science behind the effervescence and establish the relation between the sugar required to the second fermentation to produce a certain amount of carbon dioxide (pressure). In our days there are strict legislation to produce this special wine, with the OIV stating that a sparkling is a wine supersaturated in carbon dioxide (CO2) from an exclusive endogenous origin (secondary fermentation), resulting in an excess pressure of this gas in the bottle of at least 3.5bars at 20°C (68ºF) or 3.0bars for bottles less than 0.25L.

The production of sparkling wine can be separated in two main stages: base wine production and second fermentation/ageing. The base wine production follows the general principles of a white wine, with the particularity that the grapes are harvested earlier in the season to retain a higher acidity (essential to the freshness and balance) and have a lower sugar content (potential alcohol normally under 11%). Once musts have fermented to dryness and the wines are filtered, stabilized and eventually fined, they are ready to the second stage: blending, second fermentation and ageing.

Blending or preparing the cuvée is generally a critical moment to define the quality of the wine and to which winemakers pay great attention.

It consists on blending wines from different vintages, sites, varieties or even press fractions, to achieve desired characteristics and consistency. The cuvée is ready for the second fermentation once the tirage liquor is added: the required sugar to achieve 5-6bars of pressure in bottle (±4g/L → 1bar) and yeast.

Most of the sparkling wine, and particularly the premium quality sparkling, is produced by the Traditional Method or Méthode Champenoise (Champagne), where the second fermentation occurs in bottle. This is followed by ageing on lees for a certain period of time (variable), removal of yeast lees and sediments by riddling and disgorging, dosage and corking. The dosage permits topping up the bottles after disgorging and adjust the final desired sugar level by adding a more or less sweet wine/syrup (tirage liquor). Along with the production method, the final sugar level of the sparkling wine is the base of one of the classification systems:

Brut Nature – 0-3g/L
Extra Brut – 0-6g/L
Brut – 0-12g/L
Extra-dry – 12-17g/L
Dry – 17-32
Demi-sec – 32-50
Sweet (Doux) – more than 50g/L

The Traditional Method has the particularity that the bottle where the second fermentation occurs is same that reaches the consumer. There’s no discussion possible when it comes to the high quality wines produced by this method, notably the fine bubbles produced and the bouquet developed during ageing on lees, but it is labour intensive and time demanding and during the 20th century other methods and technologies were developed in order to minimize the production costs. In the Transfer Method the sparkling benefits from fermentation and ageing on lees in bottle, but riddling and disgorging steps are eliminated as the bottles are then emptied to a tank under isobaric pressure for filtration, dosage and bottling. The Charmat Method took another step forward on bringing the production costs down by allowing lower quality sparkling production entirely in stainless steel tanks, with the wine being bottled only when it is finished and ready for sale.

The Traditional Method is tipically employed in higher quality sparkling wines such as Champagne.

Innovation and future of sparkling wine

When it comes to new technologies developed in recent decades, I have to mention the use of immobilized yeast in sparkling wine production as the Portuguese company Proenol has pioneered the industrial production of immobilized yeast in the world. The immobilization of yeast in a calcium alginate matrix allows the wine to remain clear and when used in the Traditional Method it will shorten the riddling time from several days/weeks to a few seconds with the beads settling immediately.

Sparkling wine production worldwide is on the rise and has seen the biggest growth in terms of volume and value in recent years. Between 2003 and 2013 there was an increase in 40% of production and by 2017 it accounted for 8% by volume and 19% by value in the world wine trade.

I love a good sparkling, but I have to admit that I’m not the greatest enthusiast of bubbles. However, it was my passport to the wine world and I honestly find fascinating the whole process of traditional sparkling wine production and the short but intensive history of the wine. Won’t complain if I spend the first moments of 2019 sipping again ‘Millésime Bruto 2013’ by Ataíde Semedo, the last great Espumante that I had the pleasure to drink. From Bairrada, of course. Salut!

The beverage industry is pushing forward at a quick pace and top developments in the field during 2019 should still be oriented for the rise of natural, functional and sustainable drinks; however, consumers are seeking increased value chain transparency and beverage personalization. Discover below some of the top tendencies for 2019 within the drinks business.

CFER Labs is your partner in drinks R&D. Obtain your free of charge workplan by clicking here.

Healthy energy drinks with alternative sources of energy

Energy drinks are one of the fastest growing products in the global drinks market. This growth has been brought by an escalating evident consumer focus on fitness and health. In 2017, the global energy drinks market stood at USD 55 billion and is projected to grow at a CAGR of 3.7% during the forecasted period of 2018-2023, according to figures from Mordor Intelligence. The biggest oportunities for market growth lie in the European continent and in Asia-Pacific region, respectively due to a scarce offer of healthy, zero-calorie, low sugar functional drinks in Europe and increasing income, rising sports activities and urbanization in the Asia-Pacific region.

The caffeine presence in energy drinks is raising moderate levels of concern. As a result, manufacturers may wish to gradually replace caffeine by naturally energetic plant extracts in new launches for 2019, such as green coffee extract or matcha.

The caffeine presence in energy drinks may gradually be replaced by naturally energetic plant extracts in new launches for 2019.

Hyper functional drinks with ethnic and regional ingredients

According to Beverage Daily, consumers are increasingly willing to seek super ingredients in their drinks, such as goji, aloe vera, turmeric, functional spices or matcha, traditionally used as regional ethnic ingredients with known health benefits. Other ingredients, such as microalgae and mushroom extract are also gaining relevance. Consumers will look for convenient, hyper functional drinks during 2019 as part of a beverage industry gradually mixed with the vitamin and supplement industry.

New launches will reflect consumer demand for overall wellness goals, as improved sleep, cognitive function, beauty, weight loss and gut health, being expectable that new products will address deeper health issues as oral and cardiovascular health.

Consumers are increasingly willing to seek super ingredients in their drinks, such as goji, aloe vera, turmeric, functional spices or matcha.

Plant based beverages

More and more people are introducing plant-based products in their diet for health and sustainability claims. Plant based product claims have grown 62% globally from 2013 to 2017, according to figures from NDP Group. The plant-based eating and drinking movement has been promoted by celebrities, athletes, multinational retailers, food and tech companies and countries such as China. There has been a 600% increase in people identifying as vegans in the U.S in the last three years, according to a survey from GlobalData, and 350% in the UK comparing to ten years ago. According to Nielsen, vegetarianism in Portugal rose by 400% in the last decade.

In 2019 there should be a rise in the offer of plant based drinks, such as vegetable milks and drinks from soy, almond, coconut and oats, plant-based protein drinks and also exotically-flavoured malted beverages.

Almond drink leads the category of vegetable milks along with soy and coconut.

Sustainable beverages

Sustainability is growing steadily to be one of the top concerns of consumers in 2019. This is mainly related to plastic unsustainability due to recent environmental scandals and the origin and trade of ingredients. Data from Nielsen and Mintel indicates that consumers are willing to pay more for products that make claims on sustainability, while Imbibe Magazine states that consumers are using the social media to share messages about the responsibility of the purchase. Eco-friendly packaged beverages and the use of internationally certified fair-trade ingredients should become more prevalent in 2019.

Concerns regarding the origin and trade of the ingredients are becoming more prevalent among consumers.

Clean label and simple communication

Consumers are demanding clean labels and a simple communication on their products to know what exactly they consume and at what level, and national government agencies are supporting this interest. In 2019 this trend should continue to gain momentum.

The soft drinks market has witnessed in recent years the biggest percentage of clean label product introduction in Asia, the fastest growth rate region for clean label products. Within the clean label segment, natural colours are witnessing high demand due to organic and functional claims.

According to figures from Mordor Intelligence, 88% of consumers are willing to pay a premium price for products containing naturally sourced ingredients, and close to 80% of the consumers give importance to reading ingredient lists on the product before purchasing.

The trend for clean label beverages will predictably continue to grow during 2019.

CFER Labs is your partner in drinks R&D. Obtain your free of charge workplan by clicking here.



Sensory analysis is a science. No matter how subjective it may be, sensory analysis represents a decisive step during the various stages of food product development, a unique tool for determination of organoleptic properties of food and, more specifically, beer. Being a science, sensory analysis requires care in planning and diligence in execution. Sensory tests must comply with very specific standards, in particular through the establishment of certain ideal conditions to perform the experiments.

The sensory analysis of beer focuses on the beverage’s appearance, aroma, flavour and palate, and is regarded as an important quality control method for the development of new products.

The ideal conditions for the sensory experiment

Regarding the place where the tests are conducted, both temperature and humidity must be constant and easily controllable. In general, a temperature of 20 ± 2 ° C and relative humidity between 60% and 70% is recommended. The place should be free of external noises, well ventilated and free of odors. Also it should be coated with a material that is easy to clean, odor-free and that does not absorb odors. Therefore, carpets, wall paper, porous tiles, etc. should be avoided.

The colour of the test site and equipment must be neutral (white or light gray) so as not to influence the evaluation of the beer. Lighting is also a crucial factor, especially when evaluating the appearance. The lighting of the test room should be uniform, shade-free and controllable. Lamps with a color temperature of approximately 6500K are recommended. When tasting, one should avoid evaluating beers within two hours after lunch. The best time to conduct this type of tests is between 10:00 p.m. and lunchtime, or later in the afternoon, although this may vary from taster to taster, depending on their biological rhythm.

The ideal moment for the tasting is when the taster is more awake and his mental abilities are at their maximum.

How the surroundings may affect the sensory perception

The way we perceive a beer depends on many factors, mainly appearance, aroma (odor/fragrance), flavour (taste, aromatics, chemical feelings) and palate. These can be influenced by physiological and psychological aspects which may be decisive for a correct analysis of a beer. There are numerous factors that can lead to an erroneous assessment of a sample. Let’s look at some common examples:
  1. Group effect – when a good beer is put in a group of mediocre beers, the rating will be lower (and vice-versa);

  2. Central tendency error – tasters tend to rate the beers in the center of the scale, avoiding very high or very low scores;

  3. Expectation error – if you are told you will be drinking a Westvleteren XII, the expectations about the sample will be very high. To avoid preconceived ideas, details about the sample should be minimal;

  4. Mutual suggestion – happens when a reaction of a person influences the perception of the other;

  5. Lack of motivation – some testers might be uninterested and in consequence put less effort on the experiment.

Many other psychological constraints may influence the development of a sensory analysis experience. But in addition to these, there are other factors that may impact sensory evaluation of beer. For instance, the serving temperature, the glass, the serving order, cultural factors or mental fatigue. Even adaptation might be a problem, through the decrease in sensitivity to a given aroma or flavour due to continued exposure. Or, of course, if the panelist is ill, is a smoker, just drank coffee or had a heavy meal.Unfortunately, in Portugal there has been no academic tradition associated with this discipline. Sensory analysis is mostly regarded as a curiosity amongst consumers, even though the industry considers these methods highly beneficial, cost-effective and easy to apply for large or small businesses. It provides objective and subjective feedback data to enable informed decisions to be made. The growth of the craft beer industry worldwide, the importance of understanding a product characteristics and the identification of consumers preferences has helped to bring new attention to this science in many countries. Hopefully the same will happen in Portugal.